
Order-restricted one-sample comparison

import os

if "KERAS_BACKEND" not in os.environ:
# set this to "torch", "tensorflow", or "jax"
os.environ["KERAS_BACKEND"] = "jax"

import matplotlib.pyplot as plt
import numpy as np
import bayesflow as bf
import keras

INFO:bayesflow:Using backend 'jax'

The models are essentially the same as in the previous example on one-sample comparison,
the difference is in the alternative model, where instead of having a Cauchy prior on the 𝛿, we
restrict it to only negative values.

ℳ0 ∶ 𝛿 = 0
ℳ1 ∶ 𝛿 ∼ Cauchy(0, 1)𝑇 (−∞,0)

𝜎 ∼ HalfCauchy(0, 1)
𝜇 = 𝛿𝜎

𝑥𝑖 ∼ Normal(𝜇, 𝜎)

(1)

Simulator

We need to define two simulator: one that represents the null hypothesis that 𝛿 = 0, and
one that represents the alternative hypothesis that 𝛿 < 0. Then, we wrap them in a
ModelComparisonSimulator, that will sample from either of them randomly.
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We will also amortize over different sample sizes. Here we do this by randomly sampling values
between 10 and 100. In the simulators, we will make sure that the output is always of length
100 (maximum sample size); the elements in the array whose index exceeds the actual sample
size are filled with zeros. To make it easier for the networks to summarise such data, we will
also create a binary indicator variable observed, which is one when the element in x is filled
with an actual value, and zero otherwise.

max_n=100
def context():

return dict(n=np.random.randint(10, max_n))

def prior_nuisance():
sigma = np.random.standard_cauchy()
sigma = np.abs(sigma)
return dict(sigma=sigma)

def prior_null():
return dict(delta=0)

def prior_alternative():
delta = np.random.standard_cauchy()
delta = - np.abs(delta)
return dict(delta=delta)

def likelihood(sigma, delta, n):
mu = sigma * delta
x = np.zeros(max_n)
x[:n] = np.random.normal(loc=mu, scale=sigma, size=n)

observed = np.zeros(max_n)
observed[:n] = 1

return dict(x=x, observed=observed)

simulator_null = bf.make_simulator([context, prior_nuisance, prior_null, likelihood])
simulator_alt = bf.make_simulator([context, prior_nuisance, prior_alternative, likelihood])

simulator = bf.simulators.ModelComparisonSimulator([simulator_null, simulator_alt])
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Approximator

The sample size is passed into the inference network directly, and the observations in x and
the observed indicator are passed into a summary network first.

adapter=(
bf.Adapter()
.as_set(["x", "observed"])
.rename("n", "classifier_conditions")
.concatenate(["x", "observed"], into="summary_variables")
.drop(["delta","sigma"])
)

Model comparison needs a classifier network to predict the posterior model probabilities. Here,
we define a simple multi-layer perceptron to do this task.

inference_network = keras.Sequential([
keras.layers.Dense(32, activation="gelu")
for _ in range(6)

])

Then we wrap everything together.

approximator=bf.approximators.ModelComparisonApproximator(
num_models=2,
classifier_network=inference_network,
summary_network=bf.networks.DeepSet(

summary_dim=4,
mlp_widths_equivariant=(32, 32),
mlp_widths_invariant_inner=(32, 32),
mlp_widths_invariant_outer=(32, 32),
mlp_widths_invariant_last=(32, 32)

),
adapter=adapter

)

Training

Here we will do offline traing. First, we will define the number of epochs, and the simulation
budget (number of batches times the batch size). We also define an optimizer with a cosine
decay schedule.
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epochs=30
batches=20
batch_size=512
schedule=keras.optimizers.schedules.CosineDecay(1e-4, decay_steps=epochs*batches)
optimizer=keras.optimizers.Adam(schedule)
approximator.compile(optimizer)

Now we can prepare our training dataset.

train_data=simulator.sample(batches*batch_size)

train_data=bf.datasets.OfflineDataset(
data=train_data,
batch_size=batch_size,
adapter=adapter)

history=approximator.fit(
dataset=train_data,
epochs=epochs,
num_batches=batches,
batch_size=batch_size)

f=bf.diagnostics.plots.loss(history=history)

Validation

test_data=simulator.sample(1000)
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true_models = test_data["model_indices"]
pred_models = approximator.predict(conditions=test_data)

f=bf.diagnostics.plots.mc_calibration(
pred_models=pred_models,
true_models=true_models,
model_names=[r"$\mathcal{M}_0$",r"$\mathcal{M}_1$"],

)

INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode

f=bf.diagnostics.plots.mc_confusion_matrix(
pred_models=pred_models,
true_models=true_models,
model_names=[r"$\mathcal{M}_0$",r"$\mathcal{M}_1$"],
normalize="true"

)

INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
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INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode
INFO:matplotlib.mathtext:Substituting symbol M from STIXNonUnicode

Inference

winter=np.array([-0.05,0.41,0.17,-0.13,0.00,-0.05,0.00,0.17,0.29,0.04,0.21,0.08,0.37,0.17,0.08,-0.04,-0.04,0.04,-0.13,-0.12,0.04,0.21,0.17,
0.17,0.17,0.33,0.04,0.04,0.04,0.00,0.21,0.13,0.25,-0.05,0.29,0.42,-0.05,0.12,0.04,0.25,0.12])

summer=np.array([0.00,0.38,-0.12,0.12,0.25,0.12,0.13,0.37,0.00,0.50,0.00,0.00,-0.13,-0.37,-0.25,-0.12,0.50,0.25,0.13,0.25,0.25,0.38,0.25,0.12,
0.00,0.00,0.00,0.00,0.25,0.13,-0.25,-0.38,-0.13,-0.25,0.00,0.00,-0.12,0.25,0.00,0.50,0.00])

n = len(winter)

x = np.zeros(max_n)
x[:n] = winter-summer
observed = np.zeros(max_n)
observed[:n] = 1

inference_data = dict(
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n = np.array([[n]]),
x = x[np.newaxis],
observed = observed[np.newaxis]

)

pred_models = approximator.predict(conditions=inference_data)[0]

pred_models[0]/pred_models[1]

7.3406186
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