Getting started with Bayesflow

Throughout this collection of examples, we will use the BayesFlow software to work our way
through the examples. BayesFlow is a package implemented in Python, and at this moment of
time, Python is the only reasonable choice to use BayesFlow. We encourage you to familiarize
yourself with Python before delving deeper into these examples.

In this chapter, we start by working through a concrete example using BayesFlow. This
provides an introduction to the BayesFlow interface, and the basic theoretical and practical
components involved in amortized Bayesian model analysis.

Setting up your computing environment

We encourage you to follow good software practices regarding keeping your workspace tidy
and reproducible. We will use conda for managing the environment, respectively. Feel free to
use whatever you feel the most comfortable.

Installing BayesFlow

Follow installation instructions on the BayesFlow website: https://bayesflow.org/main/index.
html#install. After initiating and activating the python environment, we can simply install
BayesFlow using pip

Listing 1 Terminal

conda create --name cognitive-modeling-book python=3.11.11
conda activate cognitive-modeling-book
pip install bayesflow

BayesFlow uses the keras library, which in turn uses TensorFlow, PyTorch, or JAX as a back-
end. You have to install at least one of the three backends of your choice in your environment.
We recommend using JAX.


https://bayesflow.org/main/index.html#install
https://bayesflow.org/main/index.html#install

Listing 2 Terminal

pip install jax

To make sure that keras can access the backend, you will need to specify the KERAS_BACKEND
enviroment variable in every Python session.

Listing 3 Python

import os
os.environ["KERAS_BACKEND"] = "jax"

Alternatively, you can use conda to set the environment variable permanently.

Listing 4 Terminal

conda env config vars set KERAS_BACKEND=jax

(Assuming your terminal has the correct conda environment activated)

Using BayesFlow
After installation, BayesFlow and its subcomponents can be loaded in Python as any other
Python library.

Here we will generate a very simple beta-binomial model that can be written as

6 ~ Beta(1,1)

Lo (1)
k ~ Binomial(f, 10).

The target of inference it the binomial proportion 6, given the uniform prior Beta(1, 1), the
observed k successes out of n = 10 trials.

First, we will load the necessary packages.

import os
if "KERAS_BACKEND" not in os.environ:
# set this to "torch", "tensorflow", or "jax"

os.environ["KERAS_BACKEND"] = "jax"



import numpy as np
import bayesflow as bf
import matplotlib.pyplot as plt

INFO:bayesflow:Using backend 'jax'

Simulator

We need to define the simulator that samples from the joint prior distribution of the parameters
and data, p(0, k.

To do that, we first define the simulator function of the prior, and the simulator function of
the likelihood (that generates data conditionally on the values of the parameters). Then, we
combine them together into one simulator object.

def prior():
return dict(theta = np.random.beta(a=1, b=1))

def likelihood(theta):
return dict(k=np.random.binomial(n=10, p=theta))

simulator = bf.simulators.make_simulator([prior, likelihood])

Sampling from the simulator is done using the .sample method. The output of the simulator
is a dictionary with all generated variables (theta, k) as keys.

simulator.sample(5)

{'theta': array([[0.9943611 ],
[0.03731827],
[0.07959112],
[0.28499102] ,
[0.9183071411),

'k': array([[10],
[ o],
[ 2],
[ 5],
[ 9112



Here, we generated data from the model five times, drawing five different values of # and using
those to obtain five different values of the number of successes, k. Both values are returned
in the output dictionary. In essence, we have obtained 5 independent draws from the prior
predictive distribution.

Approximator

Now that we have defined the generative model, we can build our approximator. Its goal is to
produce the posterior distribution of the parameter 6, given some number of successes k.

For approximating the posterior distribution of continuous parameters, we can instantiate an
object of class bf.approximators.ContinuousApproximator. However, we can also define
a workflow object, bf.BasicWorkflow, which stores some additional information (e.g., the
simulator) to allow easier inference and diagnostics. We will use that class now.

A continuous approximator (and by extension, workflow), contains an inference network, and
(optionally) a summary network. To pass the output from the simulator into the networks,
we use a bf.Adapter to transform the simulator outputs into dictionary with keys that the
approximator knows how to deal with. A continuous approximator accepts the following
keys:

e "inference_variables": Variables for which to do the posterior approximation (i.e.,
parameters) using an inference network.

e "inference_conditions": Variables that are directly passed as conditions to the infer-
ence network.

o "summary_variables": Variables that are passed into a summary network (op-
tional). The output of the summary network is then passed together with
"inference_conditions" into the inference network.

The adapter can additionally handle some reshaping and transformations of our inputs. Here
for example, we indicate that the parameter 6 is constrained between 0 and 1 to ensure that
the parameter boundaries are respected during inference.

adapter = (
bf.Adapter ()
.constrain("theta", lower=0, upper=1)
.rename ("theta", "inference variables")
.rename ("k", "inference conditions")

)

worfklow = bf.BasicWorkflow(
simulator=simulator,
adapter=adapter,



inference_network=bf.networks.CouplingFlow()

Training
Once we defined our approximator, we can train it using simulated data.

history = worfklow.fit_online(epochs=30)

Validation

After training, we can validate our networks. The BasicWorkflow object we defined provides
some basic diagnostics, which often comes in handy to conduct quick, boilerplate validation.

The basic idea of diagnostics are as follows: We first generate a batch of fresh test data
from the simulator. Then, we apply our networks on these simulations, obtaining a posterior
approximation for each simulated data set.

Then, we can use the simulations and predicted posteriors for model checks, such as parameter
recovery, simulation-based calibration, model sensitivity, and so on. To read about these
diagnostics in more depth, please refer to Schad et al. (2021) and Talts et al. (2018). Most
of these diagnostics are possible to obtain with traditional (MCMC) methods as well (e.g.
Kucharsky et al., 2021), though it is typically very laborious to run them. ABI makes these
checks very easy because inference at this stage is cheap.

test_data = simulator.sample(1000)
figs=worfklow.plot_default_diagnostics(test_data=test_data, num_samples=500)
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Inference

After training and validation, we use our approximator to infer the posterior distribution of 6
given observed data. Here we compute the posterior if observed 7 successes.

The data needs to be specified in the same format as produced by the simulator (except that
now we will be missing the keys of the variables we are inferring, i.e., "theta").

inference_data = dict(k = np.array([[7]]1))

samples = worfklow.sample(conditions=inference_data, num_samples=1000)

Now we can for example plot the posterior approximation of the parameter.

f = plt.hist(samples["theta"].flatten(),
density=True, color="lightgray", edgecolor="black", bins=np.arange(0, 1.05, 0.0
title = plt.title(r"$p(\theta$ | k=7)")
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Conclusion

If you managed to go through the steps above, congratulations! You have created and ran a
Bayesian model using BayesFlow.

The example presented in this document is rather simple and would not be that useful in
analysis of real data, as we trained a very specific model (a binomial model with fixed number
of trials n = 10 and fixed hyperparameters of the prior distribution 6 ~ Beta(1,1)). Since the
model is so simple, we also did not use any summary network.

However, successuly running this example should give you confidence that at least BayesFlow
works on your computer. You are ready to go to the next examples.
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