
The basics of Amortized Bayesian Inference
(ABI)

The current adage is that Bayesian models are limited only by the user’s imagina-
tion.

That is how Lee & Wagenmakers (2013, p. 7) introduce Markov chain Monte Carlo (MCMC),
and how it allowed widespread adoption of Bayesian statistics. MCMC indeed allowed Bayesian
estimation of models that would be otherwise impossible to estimate without it. However, if
you have experience with Bayesian modeling, you will probably recognize that the statement
by Lee & Wagenmakers (2013) is a hyperbole. There are many models one could think of
that are impossible to fit even with the current state-of-the-art MCMC methods. Broadly
speaking, MCMC may not be suitable for two possible reasons: (1) the likelihood of the model
is analytically/computationally intractable, or (2) fitting the model using MCMC takes too
much computational resources.

Simulation-based inference

Simulation-based inference (SBI) is a term for methods that allow inferences for models whose
likelihoods are not analytically tractable (Cranmer et al., 2020; Lavin et al., 2021). As such,
they are sometimes referred to as “likelihood-free”. The basic idea behind SBI methods is that
instead of evaluating the likelihood function, we sample values from a simulation program
that represents our statistical model. Using these simulated values, we make inferences about
observed data. A simple example of a valid SBI method is rejection sampling. Consider the
following beta-binomial model:

𝜃 ∼ Beta(1, 1)
𝑘 ∼ Binomial(𝜃, 10). (1)

The posterior of 𝜃 given some number of successes 𝑘 is analytically tractable 𝜃 ∣ 𝑘 ∼ Beta(1 +
𝑘, 1 + 10 − 𝑘). Using rejection sampling, we would first draw samples (𝜃(𝑠), 𝑘(𝑠)) ∼ 𝑝(𝜃, 𝑘),
which is exactly the model we specified above. At this point, the distribution of 𝜃(𝑠) is equal
to the prior distribution. Next, we reject all simulated samples 𝑠 where 𝑘(𝑠) is not equal to
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the observed data. In other words, we only retain samples 𝜃(𝑠) which generated 𝑘(𝑠) that
correspond to the observed data 𝑘. By doing so, we condition the distribution of 𝜃(𝑠) on 𝑘, an
obtain samples from the posterior 𝑝(𝜃 ∣ 𝑘) instead.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import beta

# sample from the joint model
prior = np.random.beta(a=1,b=1, size=10_000)
prior_predictives = np.random.binomial(n=10, p=prior)

# rejection sampling
observed = 7
posterior = prior[prior_predictives == observed]

# plot results
x = np.linspace(0, 1, 51)
plt.plot(x, beta.pdf(x, a=1, b=1), label="Prior (analytic)", c="black", ls="--")
plt.plot(x, beta.pdf(x, a=1+observed, b=1+10-observed), label="Posterior (analytic)", c="black", ls="-.")
plt.hist(prior, density=True, alpha=0.5, bins=np.linspace(0, 1, 21), label="Prior samples")
plt.hist(posterior, density=True, alpha=0.5, bins=np.linspace(0, 1, 21), label="Posterior samples")
plt.xlabel("$\\theta$")
plt.ylabel("Density")
f=plt.legend()
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Notice that when doing rejection sampling, we never needed to evaluate the beta prior or the
binomial likelihood – we only need to sample values from them.

Of course, rejection sampling does not work this well in other scenarios. For example, when
the data is continuous and not discrete, it is futile do to rejection sampling by throwing away
samples where the simulated data does not equal the observed data, as we would almost
surely ended up with an empty set. Similar issue arises when the data and parameter space is
multidimensional. The volume of the space from which we sample becomes incredibly sparse
and rejection sampling becomes unfeasibly ineffective.

Approximate Bayesian Computation (ABC) is a collection of techniques that generalize the
idea of rejection sampling. Typically, in an ABC setup, we would use summary of the data
instead of the raw data (e.g., computing means and standard deviations would be sufficient
to summarise data coming from a Gaussian model). Then, instead of testing equality to
observed (summary of) data, we would retain samples for which a discrepancy measure between
the simulated and observed values do not exceed some threshold. Provided we select an
approprioate summary function, discrepancy measure, and small enough threshold, we will
obtain valid approximations of the posterior distributions.

Other SBI methods rely on approximating the likelihood function using the simulations, and
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using that approximation as a replacement for true model likelihood in traditional estimation
methods (e.g, MCMC). A common issue with these SBI methods is that they become inefficient
for complex models, typically much more time consuming than likelihood-based (e.g., pure
MCMC) methods.

Amortized Bayesian Inference

Amortized Bayesian inference (ABI) is a special case of SBI (Radev et al., 2020; Radev, Schmitt,
Schumacher, et al., 2023). In short, ABI relies on generative neural networks. Generative neu-
ral networks are deep learning architectures that specialize in generating arbitrary probability
distributions. In ABI, our aim is to generate the posterior distributions of the parameters
given data, 𝑝(𝜃 ∣ 𝑦). These networks must be trained in order to approximate the posterior
distribution.

During training, we use simulated values of the parameters 𝜃 and data 𝑦 drawn from the
statistical model. This step usually takes considerable time since we need to train the network
on many simulated examples, and perform optimization of the networks so as to improve our
approximation.

Once the network is trained, it can be applied to real data to obtain the posterior distribution
of the parameters. At no point during training or inference we need to evaluate the likelihood,
we only need the simulated values during training. Additionally, the inference is very fast, typ-
ically ranging from milliseconds to seconds. This makes ABI attractive not only in situations
where the likelihood is not tractable, but also in situations when we need to obtain posterior
distributions fast, e.g., when we fit the model repeatedly on multiple datasets, or when we
need to make inferences on the fly.

4



Figure 1: Two stages of ABI. First, we train neural networks on simulated tuples of parameters
𝜃 and data 𝑥. Once trained, the neural networks can be used to generate the posterior
distribution of parameters 𝜃 given observed data 𝑥, 𝑝(𝑦 ∣ 𝑥).

The input of the inference networks can be raw data, hand crafted summary statistics, summary
statistics provided by another network that can be trained together with the inference network,
or combination of those. In addition to being able to approximate the posterior distribution
of parameters, it can be efficiently used for other goals, such as marginal likelihood estimation,
surrogate likelihood, posterior predictive simulation, and more (Radev, Schmitt, Pratz, et al.,
2023).

We recommend reading through the articles that introduce it in more technical detail (e.g.,
Radev et al., 2020; Radev, Schmitt, Schumacher, et al., 2023; Radev, Schmitt, Pratz, et al.,
2023).
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