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Summary

This thesis titled Gazing into a Discrete World presents perspectives on
modeling human behavior, focusing on alternative sources of data such as eye-
tracking and response times, with a special focus dedicated to substantive ques-
tions about qualitative patterns in individual differences and development. Fur-
ther, it advocates for a closer alignment between design and analysis of experi-
ments, and their theoretical underpinnings.

The thesis is structured into three distinct parts. The first part delves into
identifying and analyzing discrete behavioral patterns, particularly through eye
movement data, emphasising model-based approaches for understanding vi-
sual attention. The second part addresses challenges in empirical research, with
a focus on developmental psychology, offering remedies for imperfections and
methodological advancements. The third part focuses on making correct in-
ferences under uncertainty, highlighting the significance of Bayesian methods
and developing openly available software tools for applied researchers.

The thesis contributes with advancements in integration of eye-tracking
into cognitive-behavioral modeling, improvements in developmental psychol-
ogy research, and provides openly available Bayesian tools.
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Samenvatting

Dit proefschrift getiteld Gazing into a Discrete World presenteert perspec-
tieven op het modelleren van menselijk gedrag, waarbij de nadruk ligt op al-
ternatieve gegevensbronnen zoals eye-tracking en reactietijden, met een spe-
ciale focus op inhoudelijke vragen over kwalitatieve patronen in individuele
verschillen en ontwikkeling. Verder wordt er gepleit voor een betere afstem-
ming tussen het ontwerp en de analyse van experimenten en hun theoretische
onderbouwing.

Het proefschrift bestaat uit drie afzonderlijke delen. Het eerste deel gaat
in op het identificeren en analyseren van discrete gedragspatronen, in het bij-
zonder door middel van oogbewegingsdata, waarbij de nadruk ligt op model-
gebaseerde benaderingen voor het begrijpen van visuele aandacht. Het tweede
deel gaat in op uitdagingen in empirisch onderzoek, met een focus op ontwikke-
lingspsychologie, en biedt oplossingen voor onvolkomenheden en methodolo-
gische verbeteringen. Het derde deel richt zich op het maken van correcte gevol-
gtrekkingen onder onzekerheid, waarbij het belang van Bayesiaanse methoden
wordt benadrukt en open software voor onderzoekers worden ontwikkeld.

Het proefschrift levert een bijdrage aan de integratie van eye-tracking in
cognitief-gedragsmatige modellering, verbeteringen in ontwikkelingspsychol-
ogisch onderzoek en biedt openlijk beschikbare Bayesiaanse hulpmiddelen.
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We live in a society where everybody knows everything
and it is a shame to say “I don’t know”

– Arsène Wenger
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Every day is important, every act is impor-
tant. The secret is that people have to be-
lieve what you are trying to deliver.

–Mikel Arteta

Introduction

Discrete switches in behavior are ubiquitous phenomena ob-
served across various domains of life. These transitions, which can
result in markedly different functions and outcomes, are integral to

the dynamics and progression of various systems. They have been thoroughly
examined in disciplines like biology, physics, social sciences, and engineering.

Within the realm of psychology, such discrete shifts are evident across a
broad spectrum of human activities, from the most fundamental cognitive pro-
cesses like changing attention focus, through the complexities of reasoning and
decision-making, up to learning and development. These shifts can as well oc-
cur within a single individual or as patterns between different individuals.

In cognitive experiments, human behavior is traditionally captured through
responses. While this data might suffice to identify distinct cognitive modes in
some instances, it may fall short in others. For example, two individuals us-
ing different strategies to solve a task might reach the same conclusion, even if
the underlying cognitive processes may be markedly different. Consequently,
it is often desirable to seek additional forms of data, such as eye movements or
response times, to discern new behavioral patterns.

Eye-tracking data, which monitor the trajectory of a participant’s gaze over
time as a proxy for visual attention, is one such valuable data source. Thus, it
holds significant promise for deepening our comprehension of human behav-
ior.

The optimal approach to studying human behavior involves the applica-
tion of robust theories, the construction of generative models, and a close inte-
gration of statistical analysis with theoretical frameworks. The ambition of this
thesis is to formulate models that characterize human behavior at various ana-
lytical levels, with a particular focus on analyzing eye movement data to detect

3
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discrete behavioral shifts.
Yet, the foundation of a strong theoretical framework, a concept for a gen-

erative model, or an immediately available and practical statistical model for
estimation within reasonable constraints is not always at hand. At times, the
wide-ranging nature of empirical evidence can make it even more challenging
to determine an appropriate starting point for modeling. Therefore, this the-
sis also includes initiatives that supply practical tools for researchers to gather
and analyze their data. Additionally, it offers descriptions of current research
practices in specific paradigms, all aimed at guiding the field toward a more
structured modeling of human behavior.

Structure
This thesis consists of three parts, each showcasing the complex dimensions
of empirical research in this field. The first part addresses substantive ques-
tions about discrete switches observed in human behavior, placing a spotlight
on discerning these patterns through eye-tracking data as an indicative measure
of visual attention, and devising statistical models that align with the prevail-
ing theoretical insights into these phenomena. The second part pivots to tackle
methodological hurdles and the practical barriers in conducting high-quality
research, with a particular emphasis on our experience with popular paradigms
in developmental psychology research. The third part concentrates on the sci-
ence of making accurate inferences amidst uncertainty, and it is particularly
dedicated to equipping applied researchers with statistically principled meth-
ods for their research endeavors.

Discrete Patterns of Behavior
In the first part we concern ourselves with uncovering and analysing behavior
that may or may not exhibit discrete patterns, and explore methods how eye
movement data can be used in addition to response behavior.

Human visual attention is characterised and manifested by discrete events
such as fixations and saccades. Before we turn our attention towards higher
cognitive tasks, we delve into the world of identifying these events from raw-
eye tracking data. Chapter 1 presents a new, model-based approach for identi-
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fying discrete events of eye movements, such as fixations and saccades, from a
continuous stream of data from the eye-tracker.

Once eye movement events are identified, we can study them to better un-
derstand visual behavior. Chapter 2 uses fixation data to model systematic pat-
terns in eye movement behavior. We argue that both temporal and spatial as-
pects of visual attention need to be taken into account when studying these
phenomena, and show the benefits of generative and analytic models that are
built on strong theoretical foundations.

Finally, chapters 3 and 4 are concerned with higher level cognitive reasoning
and discrete behavior that might emerge as a result of using different strategies
as a means to solve cognitive tasks. In chapter 3, we use eye-tracking methods
to detect cognitive strategies in solving higher level cognitive tasks (Mastermind
game and a Matrix reasoning task). However, not always is eye movement data
necessary to detect distinct modes of behavior. Chapter 4 presents a dynamic
model of evidence accumulation in speeded decision tasks that can detect par-
ticipants switching between guessing and a stimulus controlled mode, using
only responses and response times to identify them.

In conclusion, the first part of this thesis represents a comprehensive explo-
ration into the realm of discrete behavioral patterns, with a special emphasis on
eye movement data as a key to understanding complex visual attention mech-
anisms. From proposing a model-based approach for identifying specific eye
movement events to applying fixation data for modeling systematic patterns in
visual behavior, this work underscores the significance of integrating both tem-
poral and spatial aspects of visual attention. Additionally, it emphasizes the im-
portance of robust theoretical foundations for generative and analytic models.
The chapters dedicated to higher cognitive reasoning and distinct behavioral
modes further expand our understanding, demonstrating the varied applica-
tions of eye-tracking methodologies in detecting cognitive strategies and the
utility of dynamic models in identifying nuanced aspects of decision-making
processes. This part of the thesis not only contributes to our understanding
of visual behavior and provides distinction between qualitative and quantita-
tive inter- and intra-individual differences, but also highlights the potential of
eye-tracking data in revealing deeper insights into human cognition.
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Addressing Imperfections

Conducting empirical research presents a host of challenges that researchers
must navigate to ensure the validity and reliability of their findings. One pri-
mary hurdle is sample size planning, where determining the appropriate num-
ber of participants is critical to achieving statistical power while maintaining
practical and ethical constraints. Too small a sample can lead to underpow-
ered studies that cannot detect true effects, while excessively large samples may
waste resources and potentially expose subjects to more intensive experimental
designs than necessary. Another significant challenge is the need to synthesize
empirical findings across studies, which requires systematic methods and rigor-
ous meta-analytical techniques to integrate results, often from diverse contexts
and varying methodological quality. This synthesis is essential to build a co-
herent understanding of phenomena and to guide future research directions.
Lastly, optimizing research design paradigms is crucial for obtaining clear and
interpretable results. This involves careful consideration of the research ques-
tions, and the use of designs that minimize biases and confounds. Each of these
steps requires meticulous planning and a deep understanding of methodologi-
cal principles to ensure that empirical research contributes meaningful knowl-
edge to the field.

The second part of the thesis presents a critical and still often understated
reality in the realm of empirical research: the inherent imperfections and chal-
lenges that accompany the execution of any study. This acknowledgment stems
from our wealth of experience with specific experimental paradigms, their lim-
itations, and the need for continual methodological refinement. It underscores
the thesis’s commitment to not just conduct empirical research but also to crit-
ically evaluate and enhance the processes that underpin it.

In this pursuit, three chapters are presented with dual objectives. The first
is a critical examination of widely-used experimental paradigms, mainly the ha-
bituation paradigm, pinpointing their deficiencies and proposing innovative
ways to augment them. This introspective approach is grounded in the belief
that understanding and addressing the flaws of current methodologies is as im-
portant as the empirical investigations themselves.

The second objective is to offer practical methods and guidance for researchers
striving to elevate their empirical work. This includes strategies for more effec-
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tive research design, data collection, and analysis, all aimed at bolstering the
robustness and reliability of research outcomes.

Collectively, these studies serve a dual purpose: they reflect on the existing
practices, offering a candid critique, guiding researchers towards methodolog-
ical excellence. The overarching goal is to foster a research environment that
not only produces results but also refines the tools and techniques that allow
science to progress in a reliable and replicable manner.

Requiring sufficient sample sizes is a considerable problem in science in
general. This problem is particularly tricky to solve in developmental research
where resources (e.g., infants and their attention) are scarce. Chapter 5 aims to
tackle this problem by discussing Bayesian sequential sampling designs which
allow researchers collecting data until they accrue sufficient evidence, or run
out of time, money, or patience, and as a result help researchers avoid wasting
precious resources.

Chapters 6 and 7 are focused on a popular experimental paradigm in infant
research that uses habituation as a pivotal tool to study various phenomena.
This method relies heavily on the precise measurement and identification of an
infant’s habituation response to stimuli. While several techniques to assess ha-
bituation have been proposed, the field lacks a consensus on the most effective
approaches for specific research objectives. Chapter 6 offers a comprehensive,
collaborative effort through a systematic review and meta-analysis, aiming to
describe current practices in infant habituation research and to quantify the
typical effect sizes observed with these methods. This large-scale collaborative
project is currently still ongoing, after its preregistration was accepted as part of
a Registered Report. The chapter presents this preregistration, and so does not
contain results. Chapter 7, on the other hand, argues that in addition to learn-
ing from the current practices in habituation research, one needs to venture
beyond existing methodologies, introducing novel approaches to study habitu-
ation in itself. Further understanding of the habituation process will also allow
proposing alternative research designs that employ habituation as an investiga-
tive tool for other areas of interest in infant research.

Overall, this part of the thesis emphasizes the importance of continuous
reflection and improvement in research methodologies, aiming to enhance the
quality and reliability of empirical studies, particularly in developmental psy-



8

chology.

Learning under Uncertainty
While our understanding of empirical phenomena always evolves, one con-
stant remains: the presence of uncertainty. It permeates every aspect of re-
search, from hypothesis formation to data interpretation. Recognizing this
uncertainty is a necessary, fundamental aspect of scientific progress. Thus, a
pivotal question of scientific advancement is learning in the presence of uncer-
tainty.

Bayesian reasoning emerges as a powerful ally in this context. It provides a
formal framework for updating our beliefs in light of new evidence, a process at
the core of scientific inquiry. By integrating prior knowledge with current data,
Bayesian methods offer a coherent and adaptable approach. This paradigm is
not just about reaching conclusions in a principled manner; it is about quanti-
fying the degree of confidence in these conclusions and adjusting them as new
evidence becomes available.

Unfortunately, computational challenges often stand as formidable barri-
ers in adopting Bayesian methods. Furthermore, the uncertainty in construct-
ing appropriate priors and the potential for misinterpretation of Bayesian re-
sults can add even more hurdles. These challenges can be especially daunt-
ing for practitioners who may not have extensive training in advanced statis-
tical methods or access to powerful computing resources. Therefore, the de-
velopment of Bayesian methods that are accessible and user-friendly for the
practical researcher is of great importance. Simplifying Bayesian analysis with-
out compromising its rigor can democratize its application, enabling a wider
range of scientists to harness its full potential. This involves creating more intu-
itive software tools, and providing better guidance on interpreting results using
Bayesian tools. By making Bayesian methods more approachable and feasible
in a practical context, we can broaden their impact across various fields of sci-
entific inquiry.

Chapter 8 is dedicated to advancing the availability of well-calibrated de-
fault Bayesian procedures for practical researchers, thereby enriching the sta-
tistical toolkit with analyses that are both easily accessible, applicable, and in-
terpretable. This chapter builds upon prior research in Bayesian Pearson’s cor-
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relation (Ly, Marsman, & Wagenmakers, 2018), introducing an extension that
enables researchers to perform Bayesian partial correlation analyses. It provides
analytical solutions for the Bayes factor test concerning the null hypothesis of
a partial correlation, along with the posterior distribution of the partial corre-
lation coefficient, under the assumption that the alternative hypothesis is true.
Deriving analytical solution has a couple of advantages. First, analytic methods
are typically faster than numerical methods, and in general require less compu-
tational resources. In the current case, it also allows us to conduct full Bayesian
inference with just a couple of summary statistics of the data (instead of using
the full raw data), which makes it easy to apply in cases where the original data
is not available. The analytic solution for a partial correlation also shows an
interesting connection to the Pearson’s correlation, showing that the inference
for partial correlation is just its generalization. Insights from this connection
allowed us to study the properties of the Bayes factor and specify under what
conditions it satisfies desiderata for Bayes factors proposed by Jeffreys (1961).
This development marks a significant step in equipping researchers with more
robust and sophisticated Bayesian tools for their analytical needs.

In addition to developing novel Bayesian analyses, enhancing the under-
standing of Bayesian reasoning is also important. Chapter 9 presents a tutorial,
primarily aimed at medical students and professionals, for interpreting binary
classification procedures – such as medical tests – where the posterior prob-
ability of having a disease can be computed using prevalence, sensitivity, and
specificity. Such examples are often used to introduce Bayes’ theorem to stu-
dents, illustrating key concepts such as prior probability, posterior probability,
conditional and total probability. However, in the real world, prevalence, sensi-
tivity, and specificity are often unknown, and therefore are associated with un-
certainty. This chapter guides the reader through an example using theBinary
classificationmodule in JASP, focusing on how such uncertainty is taken
into account from a principled Bayesian perspective.

Chapter 9 taps into an area of methodological research where potentially
complex analyses and procedures are made available to the practitioners through
easy to use, intuitive software. Chapter 10 expands on this idea and provides an
overview of JASP, a user-friendly, open source software that makes a wide range
of statistical procedures available through a couple of simple mouse clicks. This
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chapter represents a body of work dedicated to development and maintenance
of this software.

All chapters together provide insights into the discrete patterns of behav-
ior, addressing methodological imperfections and embracing the inherent un-
certainty in cognitive and developmental research, ultimately offering a struc-
tured, theory-driven perspective on human cognition and behavior, and ad-
vocates for responsible, transparent, and reliable implementation of research
methods.



Part I

Discrete Patterns of Behavior

11





If you closed your eyes, you couldn’t tell the
difference.

–Phil Brown

Chapter 1

Characterising Eye Movement
Events with an Unsupervised

Hidden Markov Model

This chapter is published as Lüken, M., Kucharský, Š., and Visser, I. (2022).
Characterising eye movement events with an unsupervised hidden Markov
model. Journal of Eye Movement Research, 15(1). doi: 10.16910/jemr.15.1.4
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14 CHAPTER 1. GAZE HMM

Abstract
Eye-tracking allows researchers to infer cognitive processes from eye movements

that are classified into distinct events. Parsing the events is typically done by algo-
rithms. Previous algorithms have successfully used hidden Markov models (HMMs)
for classification but can still be improved in several aspects. To address these aspects,
we developed gazeHMM, an algorithm that uses an HMM as a generative model, has no
critical parameters to be set by users, and does not require human coded data as input.
The algorithm classifies gaze data into fixations, saccades, and optionally postsaccadic
oscillations and smooth pursuits.

We evaluated gazeHMM’s performance in a simulation study, showing that it suc-
cessfully recovered HMM parameters and hidden states. Parameters were less well re-
covered when we included a smooth pursuit state and/or added even small noise to sim-
ulated data. We applied generative models with different numbers of events to bench-
mark data. Comparing them indicated that HMMs with more events than expected
had most likely generated the data. We also applied the full algorithm to benchmark
data and assessed its similarity to human coding. For static stimuli, gazeHMM showed
high similarity and outperformed other algorithms in this regard. For dynamic stim-
uli, gazeHMM tended to rapidly switch between fixations and smooth pursuits but
still displayed higher similarity than other algorithms. Concluding that gazeHMM
can be used in practice, we recommend parsing smooth pursuits only for exploratory
purposes.

Future HMM algorithms could use covariates to better capture eye movement
processes and explicitly model event durations to classify smooth pursuits more ac-
curately.

1.1 Introduction

Eye-tracking is often used to study cognitive processes involving
attention and information search based on recorded gaze position
(Schulte-Mecklenbeck et al., 2017). Before these processes can be stud-

ied, the raw gaze data is classified into events that are distinct in their physiolog-
ical patterns (e.g., duration), underlying neurological mechanisms, or cogni-
tive functions (Leigh & Zee, 2015). Basic events are fixations, saccades, smooth
pursuits, and post-saccadic oscillations (PSOs). Classifying raw eye-tracking
data into these events reduces their complexity and is usually the first step to-
wards cognitive interpretation (Salvucci & Goldberg, 2000). The classification
is typically done by algorithms, which is considered faster, more objective, and
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reproducible compared to human coding (Andersson, Larsson, Holmqvist,
Stridh, & Nyström, 2017). Hein and Zangemeister (2017) give a comprehen-
sive overview of different classification algorithms (for a structured review on
classifying saccades, see also Stuart et al., 2019).

The aim of the current study is to develop a generative, unsupervised model
for characterising, describing and understanding eye movement data. Below we
discuss the requirements for such a model. One such requirement is obviously
that it can reliably classify eye movement events.

To motivate our decision to add another algorithm to this array of classifi-
cation tools, it is useful to briefly discuss the properties and goals of those tools.
On one hand, many classification algorithms use non-parametric methods to
differentiate between eye movement events1. A classic example is the “Velocity-
threshold” algorithm (Stampe, 1993), which classifies2 samples with a velocity
above a fixed threshold as saccades (see also Larsson, Nystrom, & Stridh, 2013;
Larsson, Nyström, Andersson, & Stridh, 2015; Nyström & Holmqvist, 2010).
On the other hand, many parametric methods have been developed recently.
Some of them require human-labeled training data as input and can therefore
be termed as supervised (Hastie, Tibshirani, & Friedman, 2017). For exam-
ple, Bellet, Bellet, Nienborg, Hafed, and Berens (2019) trained a convolutional
neural network (CNN) on eye-tracking data from humans and macaques and
achieved saccade classifications that were highly similar to those of human coders
(for other supervised algorithms, see Startsev, Agtzidis, & Dorr, 2019; Zem-
blys, Niehorster, & Holmqvist, 2019; Zemblys, Niehorster, Komogortsev, &
Holmqvist, 2018). Due to their high agreement with human coders, one might
call the supervised approaches “state-of-the-art”. However, the requirement of
labeled training data is a disadvantage of supervised methods because the label-
ing process can easily become costly and time-consuming (Zemblys et al., 2019).
More importantly, supervised methods also (implicitly) treat human-labeled

1We use the terms parametric/non-parametric to distinguish between models that assume
population distribution properties with finite number of population (unknown) parameters
vs. models that do not assume population distributions, assume distribution with infinite
number of parameters, or leave the population parameters undefined (Geisser & Johnson,
2006; Zacks, 2014).

2We use the terms classification and event classification throughout this paper but see
discussion about the appropriateness of those terms as compared with event detection in
(R. S. Hessels, Niehorster, Nyström, Andersson, & Hooge, 2018).
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training data as a reliable gold standard, an assumption that may be unwar-
ranted (see discussion in Hooge, Niehorster, Nyström, Andersson, & Hessels,
2018). The reliance on training data also makes supervised methods inflexible:
When test data strongly deviates from the training data, the classification per-
formance can decrease substantially (e.g., Startsev et al., 2019). Furthermore,
when the required events for test data differ from the hand-coded events in the
training data, the latter would need to be recoded, causing additional costs. In
contrast, unsupervised classification algorithms do not require labeled training
input. Instead, they learn parameters from the characteristics of the data them-
selves (Hastie et al., 2017). In consequence, they are also more flexible in classi-
fying data from different individuals, tasks, or eye-trackers (e.g., R. S. Hessels,
Niehorster, Kemner, & Hooge, 2017; Houpt, Frame, & Blaha, 2018).

Besides discriminating between supervised and unsupervised methods, al-
gorithms can vary in whether they are explicitly modeling the data generating
process and are thus able to simulate new data. To our knowledge, these gen-
erative models have been rarely used to classify eye movement data (cf. Mihali,
van Opheusden, & Ma, 2017; Wadehn, Weber, Mack, Heldt, & Loeliger, 2020).
Classifiers with generative assumptions have the advantage that their parame-
ters can be easily interpreted in terms of the underlying theory. In the context
of eye movements, they can also help to explain or confirm observed phenom-
ena: For instance, their parameters can indicate that oscillations only occur af-
ter but not before saccades. When the goal is to understand eye movement
events and improve their classification based on this understanding, this aspect
is an advantage over non-parametric or supervised methods. Moreover, genera-
tive models can challenge common theoretical assumptions and bring up new
research questions (Epstein, 2008). For example, they might suggest that os-
cillations also occur before saccadic eye movements (as mentioned in Nyström
& Holmqvist, 2010) or that the assumption that eye movements are discrete
events (e.g., saccades and PSOs cannot overlap) does not hold (as discussed in
Andersson et al., 2017).

We argue that the recent focus on supervised approaches misses an impor-
tant facet of eye movement event classification: Supervised methods are trained
on human-labeled data and can predict human classification well. This is an
important milestone for applicants that are interested in automating human



1.1. INTRODUCTION 17

classification. However, since human classification may not be as reliable, valid,
and objective as assumed (Andersson et al., 2017; Hooge et al., 2018), supervised
approaches will also reproduce these flaws. Instead, we suggest taking a differ-
ent avenue and developed an unsupervised, generative algorithm to set a start-
ing point for more explicit parametric modeling of common eye movement
events (cf. Mihali et al., 2017). By relying on likelihood-based goodness-of-fit
measures, we aim to achieve a classification that reaches validity through model
comparison instead of making the classification more human-like. A model-
based approach can also improve the reliability because it will lead to the same
classification given the correct settings, whereas human annotation can depend
on implicit, idiosyncratic thresholds that may be hard to reproduce (see Hooge
et al., 2018).

One class of generative models that are used in eye movement classification
are HMMs. They estimate a sequence of hidden states (i.e., a discrete variable
that cannot be directly observed) that evolves parallel to the gaze signal. Each
gaze sample depends on its corresponding state. Each state depends on the pre-
vious but not on earlier states of the sequence (Zucchini, MacDonald, & Lan-
grock, 2016). Further, HMMs can be viewed as unsupervised models that can
learn the hidden states and parameters of the emission process from the ob-
served data alone, and as such do not in principle need labeled training data.
They are suitable models for eye movement classification because the hidden
states can be interpreted as eye movement events and gaze data are dependent
time series (i.e., one gaze sample depends on the previous). HMMs can be ap-
plied to individual or aggregated data (or both, see Houpt et al., 2018) and are
thus able to adapt well to interindividual differences in eye movements.

On this basis, several classification algorithms using HMMs have been de-
veloped: One instance is described in Salvucci and Goldberg (2000) and com-
bines the HMM with a fixed threshold approach (named “Identification by
HMM” [I-HMM]). Samples are first labeled as fixations or saccades, depend-
ing on whether their velocity exceeds a threshold, and then reclassified by the
HMM. Pekkanen and Lappi (2017) developed an algorithm that filters the posi-
tion of gaze samples through naive segmented linear regression (NSLR). The al-
gorithm uses an HMM to parse the resulting segments into fixations, saccades,
smooth pursuits, and PSOs based on their velocity and change in angle (named
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NSLR-HMM). Another version by Mihali et al. (2017) uses a Bayesian HMM
to separate microsaccades (short saccades during fixations) from motor noise
based on sample velocity (named “Bayesian Microsaccade Detection” [BMD]).
Moreover, Houpt et al. (2018) applied a hierarchical approach developed by Fox
and colleagues that describes sample velocity and acceleration through an au-
toregression (AR) model, computes the regression weights through an HMM,
and estimates the number of events with a beta-process (BP) from the data
(named BP-AR-HMM).

Several studies have tested the performance of HMM algorithms against
other classification methods: I-HMM has been deemed as robust against noise,
behaviorally accurate, and showing a high sample-to-sample agreement to hu-
man coders (Andersson et al., 2017; Komogortsev, Gobert, Jayarathna, Koh, &
Gowda, 2010; Salvucci & Goldberg, 2000). However, the agreement was lower
when compared to an algorithm using a Bayesian mixture model (Kasneci, Kas-
neci, Kübler, & Rosenstiel, 2014; Tafaj, Kasneci, Rosenstiel, & Bogdan, 2012).
NSLR-HMM showed even higher agreement to human coding than I-HMM
(Pekkanen & Lappi, 2017) but was outperformed for saccades by the CNN al-
gorithm by Bellet et al. (2019).

In sum, HMMs seem to be a promising method for classifying eye move-
ments in unsupervised settings. Nevertheless, the existing HMM algorithms
each have at least one aspect in which they could be improved.

First, I-HMM relies on setting an appropriate threshold to determine the
initial classification, which can distort the results (Blignaut, 2009; Komogort-
sev et al., 2010; Shic, Scassellati, & Chawarska, 2008). Second, the current im-
plementation of NSLR-HMM requires human-coded data, which narrows its
applicability to applications where supervised methods are also an option. It
also inheres fixed parameters that prevent the algorithm to adapt to individual-
or task-specific signals. Third, BMD limits the classification to microsaccades
which are irrelevant in many applications and sometimes even considered as
noise (Duchowski, 2017). The opposite problem was observed for BP-AR-
HMM: It tends to estimate an unreasonable number of events from the data of
which many are considered as noise events (e.g., blinks). Therefore, the authors
suggest using it as an exploratory tool followed by further event classification
(Houpt et al., 2018).



1.1. INTRODUCTION 19

1.1.1 Goals

The goal of the project reported in this article is to move towards generative
models of eye movement events. The purpose of generative models is to bring
better understanding of the events they describe in a fully statistical framework,
which enables likelihood-based comparisons and hypothesis tests, or to gen-
erate novel hypotheses. Such models can be also used for classification, even
though that may not be their only or primary application.

In this article, we present a novel model of eye movement events, named
gazeHMM, that relies on an HMM as a generative model.

The first step in developing a generative model that can be also used as a
statistical model (e.g., to be fit to data), is to ensure its computational consis-
tency, that is, whether the model is able to recover parameter values that were
used to generate the data. Second, as classification is one of the possible applica-
tions of such model, it is important to evaluate the classification performance
and ensure that the model does reasonably well identifying the eye movement
events it putatively describes. We believe these two questions are the minimal
requirements of a generative model in the current setting, and the current ar-
ticle brings just that — evaluation of the basic characteristics of a generative
model that we developed.

Table 1.1 presents a selection of recently developed classification algorithms
(i.e., the “state-of-the-art”) and highlights the contribution of gazeHMM for
the purpose of eye movement classification: First, our algorithm uses an unsu-
pervised classifier and thus does not require human-coded training data. This
independence also allows gazeHMM to adapt well to interindividual differ-
ences in gaze behavior. Second, gazeHMM uses a parametric model (i.e., an
HMM) and relies on maximum likelihood estimation, which enables model
comparisons and testing parameter constraints. This property has been rarely
used in eye movement event models. Third, it classifies the most relevant eye
movement events, namely, fixations, saccades, PSOs, and smooth pursuits. Ad-
ditionally, gazeHMM gives the user the option to only classify the first two or
the first three of these events, a feature that most other algorithms do not have.
As a minor goal, we aimed to reduce the number of thresholds which users have
to set to a minimum.

The following section describes gazeHMM and the underlying generative
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Event

Algorithm Unsupervised Parametric Fixations Saccades PSOs Pursuits

gazeHMM X X X X X X
BP-AR-HMM X X
NSLR-HMM X X X X X
I2MC X X
U’n’Eye X X
IRF X X X
gazeNet X X X X
CNN-BLTSM X X X X

Table 1.1: Recently Developed Algorithms for Eye Movement Classification.
X means that an algorithm has the respective property or classifies the respec-
tive event. BP-AR-HMM = beta-process autoregressive HMM (Houpt et al.,
2018); NSLR-HMM = naive segmented linear regression HMM (Pekkanen &
Lappi, 2017); I2MC = identification by two-means clustering (R. S. Hessels et
al., 2017); U’n’Eye by Bellet et al. (2019); IRF = identification by random forest
(Zemblys et al., 2018); gazeNet by Zemblys et al. (2019); CNN-BLTSM = con-
volutional neural network bidrectonal long short-term memory (Startsev et al.,
2019).

model in detail. Then, we present the parameter recovery of the HMM and
show how the algorithm performs compared to other eye movement event clas-
sification algorithms concerning the agreement to human coding. Importantly,
we did not compare gazeHMM to supervised algorithms due to the training re-
quirements of these methods. Finally, we discuss these results and propose di-
rections in which gazeHMM and other HMM algorithms could be improved.

1.2 Developing gazeHMM

As illustrated in Figure 1.1, most eye movement event classification algorithms
consist of three steps (cf. R. S. Hessels et al., 2017): During preprocessing, fea-
tures (such as velocity and acceleration) are extracted from the raw gaze posi-
tions. Often, a filtering or smoothing procedure is applied to the data, before
or after the transformation, to separate the gaze signal from noise and artifacts
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(Spakov, 2012). Then follows the classification, depending on the method and
settings of the algorithm, each sample is labeled as a candidate for one of the
predefined events. Lastly, as part of the postprocessing3, the algorithm decides
which candidates to accept, relabel, or merge (R. S. Hessels et al., 2017; Ko-
mogortsev et al., 2010).

1.2.1 Preprocessing

Algorithms require variables that describe gaze data (hereafter called eye move-
ment features) to classify them into events. Many eye movement features have
been proposed and used in previous algorithms (for examples, see Andersson et
al., 2017; Zemblys et al., 2018), but most of them rely on thresholds or window
ranges that have to be set by the user (e.g., the distance between the mean posi-
tion in a 100 ms window before and after each sample, see Olsson, 2007). This
can be problematic because such parameters are often set without theoretical
justification and differ substantially between features or heavily depend on the
eye-tracker’s characteristics (e.g., sampling frequency, Andersson et al., 2017).
In gazeHMM, we used velocity, acceleration, and sample-to-sample angle (syn-
onymous to relative or change in angle Larsson et al., 2013) because they belong
to the most basic features which do not require additional parameter settings.

Theoretically, these three features should separate eye movement events,
depending on one’s definitions (R. S. Hessels et al., 2018). In the present work,
we assume eye-tracking applications with fixed head position (chin-rest), gazing
at a fixed display with a stationary eye-tracker. Fixations typically show samples
with low velocity and acceleration. Due to tremor, we assume that the angle be-
tween samples should not follow any direction but a uniformly random walk.
In contrast, saccade samples usually have a high velocity and acceleration and
roughly follow the same direction. PSO samples tend to have moderate veloc-
ity and high acceleration since they occur between saccades and low-velocity
events (Larsson et al., 2013, 2015). They can be specifically distinguished by their

3R. S. Hessels et al. (2017) called step two the search rule and step three the classification
rule. For non-parametric methods, this distinction might be accurate. However, for paramet-
ric methods, calling step two "classification" is more appropriate since the probabilistic classi-
fication is done here. Step three usually consists of some heuristic relabeling and correcting for
classification errors.
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Figure 1.1: Example Workflow for Eye Movement Event Classification Algo-
rithms. Workflow description: (a) the raw gaze signal in x (upper line) and y
(lower line) coordinates; (b) the raw gaze signal is filtered and transformed into
a velocity signal; (c) samples are classified as events (indicated by colors), and
(d) relabeled. Sequences of samples belonging to the same event are merged
(indicated by black segments). Data from Andersson et al. (2017).
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change in direction clustered around 180 degrees (Pekkanen & Lappi, 2017).
Importantly, the feature distribution during oscillations depends on the reso-
lution of the gaze recording: Eye-trackers with higher sampling frequency yield
more changes in direction and more samples in between those changes. Those
samples in between typically follow the same direction. Thus, with high sam-
pling frequencies, PSO samples might also cluster around a sample-to-sample
angle of zero with outliers around 180 degrees. Lastly, smooth pursuit samples
have a moderate velocity but low acceleration (due to the smoothness) and like
saccades, they follow a similar direction (Larsson et al., 2013; Leigh & Zee, 2015).
Other algorithms focus exclusively on classifying microsaccades (e.g., Mihali et
al., 2017), but as stated earlier, these events were not in the scope of gazeHMM.
The velocity and acceleration signals are computed from the raw gaze position
by using a Savitzky-Golay filter (similar to Nyström & Holmqvist, 2010; Sav-
itzky & Golay, 1964). The sample-to-sample angle is calculated as:

α(t) = arctan

(
yt+1 − yt
xt+1 − xt

)
− arctan

(
yt − yt−1

xt − xt−1

)
, (1.1)

with α(t) := α(t) + 2π for α(t) < 0, and is therefore bound between 0
and 2π. Most of the missing data in eye movement data are due to blinks. In
gazeHMM, we do not consider blinks as an additional event but rather as an-
other source of noise. Therefore, the user can provide an indicator for sam-
ples that should be labeled as blinks (e.g., based on automated blink detection
through the eye-tracker). Often, eye-trackers record a few samples with un-
reasonably high velocity and acceleration before losing the pupil signal when a
blink occurs. Since these samples could distort the classification of saccades in
the HMM, gazeHMM removes them heuristically. Before classifying the sam-
ples, it sets all samples within 50 ms before and after blink samples as missing.
We note that this arbitrary setting is undermining our development goal of re-
quiring as few user settings as possible. However, when we included blinks in
the generative model itself, the classification of the other events became worse.
Thus, we justify the heuristic blink removal by its accuracy, simplicity, and prac-
ticality. Furthermore, we experienced during the development that the default
setting of 50 ms was appropriate for all data we examined.
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1.2.2 The Generative Model

We denote the three eye movement features by X , Y , and Z . Each feature was
generated by a hidden state variable S. Given S, the HMM treats X , Y , and
Z as conditionally independent. Conditional independence might not accu-
rately resemble the relationship between velocity and acceleration (which are
naturally correlated). This step was merely taken to keep the HMM simple and
identifiable. In gazeHMM, S can take one of two, three, or four hidden states.
By selecting appropriate default starting values for the states (see Table 1.4),
the algorithm is nudged to associate them with the same eye movement events.
We remark that gazeHMM does not guarantee a consistent correspondence be-
tween states and events (see the phenomenon of label switching in the simula-
tion study discussion). However, when applying gazeHMM to eye movement
data, we did not encounter any problems in this regard. Moreover, gazeHMM
comes with tools for a ‘sanity check’ to confirm whether expected and esti-
mated state characteristics match (i.e., the HMM converged to an appropriate
solution). Given correct identification, the first state represents fixations, the
second saccades, the third PSOs, and the fourth smooth pursuits. Thus, users
can choose whether they would like to classify only fixations and saccades, or
additionally PSOs and/or smooth pursuits. HMMs can be described by three
submodels: An initial state model, a transition model, and a response model.
The initial state model contains probabilities for the first state of the hidden
sequence ρi = P (S1 = i), with i denoting the hidden state. In gazeHMM,
the initial states are modeled by a multinomial distribution. The evolution of
the sequence is in turn described by the transition model, which comprises the
probabilities for transitioning between different states in the HMM. Typically,
probabilities to transition from state i to j, aij = P (St+1 = j|St = i), are
expressed in matrix form (Visser, 2011):

A =

 a11 ... a1j
... . . . ...

ai1 ... aij

 .

Again, the transition probabilities for each state are modeled by multinomial
distributions. The response model encompasses distributions describing the
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response variables for every state in the model. Previous algorithms have used
Gaussian distributions to describe velocity and acceleration signals (sometimes
after log-transforming them). However, several reasons speak against choosing
the Gaussian: First, both signals are usually positive (depending on the com-
putation). Second, the distributions of both signals appear to be positively
skewed conditionally on the states, and third, to have variances increasing with
their mean. Thus, instead of using the Gaussian, it could be more appropri-
ate to describe velocity and acceleration with a distribution that has these three
properties. In gazeHMM, we use gamma distributions with a shape and scale
parametrization for this purpose:

(X | S = i) ∼ Gamma(αxi, βxi)

(Y | S = i) ∼ Gamma(αyi, βyi),

with i denoting the hidden state. When we developed gazeHMM, the gamma
distribution appeared to fit eye movement data well, but we also note that it
might not necessarily be the best fitting distribution for every type of eye move-
ment data. We assume that the best fitting distribution will depend on the task,
eye-tracker, and individual (see discussion). We emphasize that gazeHMM does
not critically depend on the choice of distribution and other distributions than
the gamma can be readily included in the model, for example the log-normal
has the same required properties of being positive and positively skewed. To
model the sample-to-sample angle, we pursued a novel approach in gazeHMM:
A mixture of von Mises distributions (with a mean and concentration param-
eter) and a uniform distribution:

(Z | S = 1) ∼ U(0, 2π)

(Z | S = 2) ∼ von Mises(µ1, κ1)

(Z | S = 3) ∼ von Mises(µ2, κ2)

(Z | S = 4) ∼ von Mises(µ3, κ3).

Both the distributions and the feature operate on the full unit circle (i.e., be-
tween 0 and 2π), which should lead to symmetric distributions. Von Mises
is a maximum entropy distribution on a circle under a specified location and
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concentration, and can be considered an analogue to the Gaussian distribu-
tion in circular statistics (Mardia & Jupp, 2009). Because we assume fixations
to change their direction similar to a uniformly random walk (Larsson et al.,
2013, 2015), their sample-to-sample angle can be modeled by a uniform distri-
bution. Thus, the uniform distribution should distinguish fixations from the
other events. Taking all three submodels together, the joint likelihood of the
observed data and hidden states can be expressed as:

L(X,Y,Z,S|λ) = ρS1fS1(X1)fS1(Y1)fS1(Z1)

T−1∏
t=1

aStSt+1fSt+1(Xt+1)fSt+1(Yt+1)fSt+1(Zt+1), (1.2)

with λ denoting the vector containing the initial state and transition probabil-
ities as well as the response parameters. By summing over all possible state se-
quences, the likelihood of the data given the HMM parameters becomes (Visser,
2011):

L(X,Y,Z|λ) =
∑
all S

ρS1fS1(X1)fS1(Y1)fS1(Z1)

T−1∏
t=1

aStSt+1fSt+1(Xt+1)fSt+1(Yt+1)fSt+1(Zt+1). (1.3)

The parameters of the HMM are estimated through maximum likelihood us-
ing an expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977; McLachlan & Krishnan, 1997). The EM algorithm is generally suitable
to estimate likelihoods with missing variables. For HMMs, it imputes miss-
ing with expected values and iteratively maximizes the joint likelihood of pa-
rameters conditional on the observed data and the expected hidden states (i.e.,
eye movement events Visser, 2011). When evaluating the likelihood of missing
data, gazeHMM integrates over all possible values, which results in a proba-
bility density of one. The sequence of hidden states is estimated through the
Viterbi algorithm (Forney Jr, 1973; Viterbi, 1967) by maximizing the posterior
state probability. Parameters of the response distributions (except for the uni-
form distribution) are optimized on the log-scale (except for the mean param-
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eter of the von Mises distribution) using a spectral projected gradient method
(Birgin, Martinez, & Raydan, 2000) and Barzilai-Borwein step lengths (Barzilai
& Borwein, 1988). The implementation in depmixS4 allows to include time-
varying covariates for each parameter in the HMM. In gazeHMM, no such co-
variates were included and thus, only intercepts were estimated for each param-
eter.

1.2.3 Postprocessing

After classifying gaze samples into states, gazeHMM applies a postprocessing
routine to the estimated state sequence. We implemented this routine because
in a few cases, gazeHMM would classify samples that were not following sac-
cades as PSOs. Constraining the probabilities for nonsaccade events to turn
into PSOs to zero often caused PSOs not to appear in the state sequence at all.
Moreover, gazeHMM does not explicitly control the duration of events in the
HMM which occasionally led to unreasonably short events. Thus, the post-
processing routine heuristically compensates for such violations. This routine
relabels one-sample fixations and smooth pursuits, saccades with a duration
below a minimum threshold (here: 10 ms), and PSOs that follow nonsaccade
events. Samples are relabeled as the state of the previous event. Finally, samples
initially indicated as missing are labeled as noise (including blinks) and event
descriptives are computed (e.g., fixation duration).

The algorithm is implemented in R (version: 3.6.3 R Core Team, 2020) and
uses the packages signal (Ligges, Short, & Kienzle, 2015) to compute velocity
and acceleration signals, depmixS4 (Visser, 2011) for the HMM, CircStats
(Lund & Agostinelli, 2018) for the von Mises distribution, and BB (Varadhan
& Gilbert, 2009) for Barzilai-Borwein spectral projected gradient optimiza-
tion. The algorithm is available on GitHub (github.com/maltelueken/
gazeHMM). We conducted a parameter recovery study that is also available
on GitHub (github.com/maltelueken/gazeHMM_validation) show-
ing that the model recovers parameters well when the noise level is not too high.

https://github.com/maltelueken/gazeHMM
https://github.com/maltelueken/gazeHMM
https://github.com/maltelueken/gazeHMM_validation
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1.3 Simulation Study
As a first step to validate the model, we need to ensure that fitting the model
to the data results in recovering the properties of the underlying data generat-
ing process. The standard procedure in computational modeling is conduct-
ing parameter recovery study (Heathcote, Brown, & Wagenmakers, 2015). Al-
though this step is crucial when developing new models, it is often not done or
goes unreported in eye-tracking literature. To counter this trend, we report a
simulation study we conducted to assess the recovery of parameter values and
state sequences. The design and analysis of the study were preregistered on
the Open Science Framework (osf.io/vdjgp). The majority of this section
is copied from the preregistration (with adapted tenses). The study was di-
vided in four parts. Here, we only report the first two parts, which investigate
the influence of parameter variation and adding noise to generated data on re-
covery. The other two parts, which address starting values and missing data,
can be found in the supplementary material github.com/maltelueken/
gazeHMM_validation). The HMM repeatedly generated data with a set of
parameters (henceforth: true parameter values). An example of the simulated
data is shown in Figure 1.2.The same model was applied to estimate the param-
eters from the generated data (henceforth: estimated parameter values). We
compared the true with the estimated parameter values to assess whether a pa-
rameter was recovered by the model. Additionally, we contrasted the true states
of the HMM with the estimated states to judge how accurately the model re-
covered the states that generated the data.

1.3.1 Starting Values

The HMM always started with a uniform distribution for the initial state and
state transition probabilities. Random starting values for the estimation of
shape, scale, and concentration parameters were generated by gamma distribu-
tions with a shape parameter of αstart = 3 and βstart;i = θi/2, with θi being
the true value of the parameter to be estimated in simulation i ∈ (1, . . . , I).
This setup ensured that the starting values were positive, their distributions
were moderately skewed, and the modes of their distributions equaled the true
parameter values. The mean parameters of the von Mises distribution always

https://osf.io/vdjgp
https://github.com/maltelueken/gazeHMM_validation
https://github.com/maltelueken/gazeHMM_validation
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Figure 1.2: Example of data simulated from gazeHMM.
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ρi ai=j ai ̸=j

Interval - [0.01,0.99] (1− ai=j)/(k − 1)
Default 1/k 0.9 0.1/(k-1)

Table 1.2: Intervals and Default Parameter Values for the Transition Model in
the Simulation Study. The initial state probability is denoted by ρi. The tran-
sition probability for staying in the same state is denoted by ai=j and the prob-
ability for switching to a different state by ai ̸=j . The number of states in the
model is denoted by k.

started at their true values.

1.3.2 Design
In the first part, we varied the parameters of the HMM. For models with k ∈
{2, 3, 4} states, q ∈ {10, 15, 20} parameters were manipulated, respectively.
For each parameter, the HMM generated 100 data sets with N = 2500 sam-
ples, and the parameter varied in a specified interval in equidistant steps. This
resulted in 100 × (10 + 15 + 20) = 4500 recoveries. Only one parameter
alternated at once, the other parameters were set to their default values. All pa-
rameters of the HMM were estimated freely (i.e., there were no fixed parame-
ters in the model). We did not manipulate the initial state probabilities because
these are usually irrelevant in the context of eye movement classification. For
the transition probabilities, we only simultaneously changed the probabilities
for staying in the same state (diagonals of the transition matrix) to reduce the
complexity of the simulation. The leftover probability mass was split evenly
between the probabilities for switching to a different state (per row of the tran-
sition matrix). Moreover, we did not modify the mean parameters of the von
Mises distributions: As location parameters, they do not alter the shape of the
distribution and they are necessary features for the HMM to distinguish be-
tween different states.

We defined approximate ranges for each response variable (see supplemen-
tary material) and chose true parameter intervals and default values so that they
produced samples that roughly corresponded to these ranges. Tables 1.2 and
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1.3 show the intervals and default values for each parameter in the simulation.
Parameters were scaled down by factor 10 (compared to the reported ranges)
to improve fitting of the gamma distributions. We set the intervals for shape
parameters of the gamma distributions for all events to [1,5] to examine how
skewness influenced the recovery (shape values above five approach a symmetric
distribution). The scale parameters were set so that the respective distribution
approximately matched the assumed ranges. Since the concentration parame-
ters of the von Mises distribution are the inverse of standard deviations, they
were varied on the inverse scale.

In the second part, we manipulated the sample size of the generated data
and the amount of noise added to it. The model parameters were set to their
default values. For models with k ∈ {2, 3, 4} states and sample sizes of N ∈
{500, 2500, 10000}, we generated 100 data sets (100× 3× 3 = 900 recover-
ies). These sample sizes roughly match small, medium, and large eye-tracking
data sets for a single participant and trial (e.g., with a frequency of 500 Hz,
the sample sizes would correspond to recorded data with lengths of 1 s, 5 s,
and 20 s, respectively). To simulate noise, we replaced velocity and acceler-
ation values y with draws from a gamma distribution with αnoise = 3 and
βnoise = (y/2)τnoise with τnoise ∈ [1, 5] varying between data sets. This pro-
cedure ensured that velocity and acceleration values remained positive and were
taken from moderately skewed distributions with modes equal to the original
values. To angle, we added white noise from a von Mises distribution with
µnoise = 0 and κnoise ∈ 1/[0.1, 10] varying between data sets. τnoise and
κnoise were increased simultaneously in equidistant steps in their intervals.
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Velocity Acceleration Rel. angle

α β α β µ κ

State 1
Interval [1,5] [0.1,0.6] [1,5] [0.05,0.25] - -
Default 3 0.35 3 0.25 - -
State 2
Interval [1,5] [5,15] [1,5] [1,5] - 1/[0.1,10]
Default 3 10 3 3 0 1
State 3
Interval [1,5] [0.5,1.5] [1,5] [1,5] - 1/[0.1,10]
Default 3 1 3 3 π 1
State 4
Interval [1,5] [0.5,1.5] [1,5] [0.05,0.25] - 1/[0.1,10]
Default 3 1 3 0.15 0 1

Table 1.3: Intervals and Default Parameter Values for the Response Model in
the Simulation Study. Shape parameters are denoted by α, scale parameters
by β, mean parameters by µ, and concentration parameters by κ. The default
values for the uniform distribution in state one were min = 0 and max = 2π.

1.3.3 Data Analysis

For each parameter separately, we calculated the root median square propor-
tion deviation (RMdSPD; analogous to root median square percentage errors,
see Hyndman & Koehler, 2006) between the true and estimated parameter val-
ues:

RMdSPD =
√

Median(ϵ21, . . . , ϵ2I) (1.4)

ϵ2i =

(
θ̂i − θi
θi

)2

, (1.5)

where θi is the true parameter value and θ̂i is the estimated parameter value for
simulation i ∈ (1, . . . , I), respectively. Even though it was not explicitly men-
tioned in the preregistration, this measure is only appropriate when θi ̸= 0.
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This was not the case for some mean parameters of the von Mises distributions.
In those cases, we used θi = 2π instead. We treated RMdSPD < 0.1 as good,
0.1 ≤ RMdSPD < 0.5 as moderate, and RMdSPD ≥ 0.5 as bad recovery of
a parameter. By taking the median, we reduced the influence of potential out-
liers in the estimation and using proportions enabled us to compare RMdSPD
values across parameters and data sets.

Additionally, we applied a bivariate linear regression with the estimated pa-
rameter values as the dependent and the true parameter values as the indepen-
dent variable to each parameter that has been varied on an interval in part one.
Regression slopes closer to one indicated that the model better captured pa-
rameter change. Regression intercepts different from zero reflected a bias in
parameter estimation.

To assess state recovery, we computed Cohen’s kappa (for all events taken
together, not for each event separately) as a measure of agreement between true
and estimated states for each generated data set. Cohen’s kappa estimates the
agreement between two classifiers accounting for the agreement due to chance.
Higher kappa values were interpreted as better model accuracy. We adopted the
ranges proposed by Landis and Koch (1977) to interpret kappa values. Models
that could not be fitted were excluded from the recovery.

1.3.4 Results

Parameter Variation

In the first part of the simulation, we examined how varying the parameters4

in the HMM affected the deviation of estimated parameters and the accuracy
of estimated state sequences. For the two-state HMM, the recovery of parame-
ters and states was nearly perfect (all RMdSPDs < 0.1, intercepts and slopes of
regression lines almost zero and one, respectively, and Cohen’s kappa close to
1). Therefore, we chose to include the respective figures in the supplementary
material.

For the HMM with three states, the RMdSPD is shown in Figure 1.3. When

4Note that the initial state probability ρi has RMdSPD = 1. Since the HMM only simu-
lated one state sequence, this parameter is always either zero or one (leading to RMdSPD = 1).
Therefore, we decided to exclude it from the analysis.
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response parameters (other than ai=j) were manipulated, the RMdSPDs for
a12 and a31 were consistently between 0.1 and 0.5. Varying κ in states two and
three led to RMdSPDs between 0.1 and 0.5 in the respective states, which we in-
terpreted as moderate recovery. Otherwise, RMdSPDs were consistently lower
than 0.1, indicating good recovery. Inspecting the regression lines between true
and estimated parameters (see Figures 1.4 and 1.5) revealed strong and unbiased
linear relationships (intercepts close to zero and slopes close to one). In con-
trast to the two-state HMM, larger deviations and more outliers were observed.
Cohen’s kappa values are presented in Figure 1.6. For most estimated models,
the kappa values between true and estimated state sequences were above 0.95,
meaning almost perfect agreement. However, for some models, we observed
kappas clustered around zero or -0.33, which is far from the majority of model
accuracies. An exploratory examination of these clusters suggests that state la-
bels were switched (see supplementary material).

The RMdSPDs for the four-state HMM is shown in Figure 1.7. For esti-
mated transition probabilities and αvel and βvel parameters in states one and
four, RMdSPDs were between 0.1 and 0.5, suggesting moderate recovery. Also,
estimated kappa parameters in state four were often moderately recovered when
parameters in states two, three, and four were varied. Otherwise, RMdSPDs
were below 0.1, indicating good recovery. Looking at Figures 1.8 and 1.9, the
regression lines between true and estimated parameters exhibit strong and un-
biased relationships. However, there were larger deviations and more outliers
than in the previous models, especially for states one and four. Cohen’s kappa
ranged mostly between 0.6 and 0.9, meaning moderate to almost perfect agree-
ment between true and estimated state sequences (see Figure 1.10). Here, some
outlying kappa values clustered around 0.25 and zero.
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Figure 1.3: RMdSPD Between True and Estimated Parameters of the Three-
State HMM in Part One of the Simulation. Labels on the x-axis indicate which
true parameters have been manipulated and labels on the y-axis show for which
estimated parameter the RMdSPD is displayed. Top facet labels specify in
which state the parameters have been varied and right facet labels denote to
which state estimated parameters belong. ρi is the initial probability for state
i (indicated by the right facet label), ai=j is the probability to transition from
state i to state j, α and β are the shape and scale parameters of the gamma dis-
tributions, and µ and κ are the mean and concentration parameter of the von
Mises distribution.
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Figure 1.4: Regression Lines Between True and Estimated Transition Proba-
bilities for the Three-State HMM in Part One of the Simulation. Right facet
labels show from and top facet labels show to which state the HMM is moving.
Dashed lines refer to perfect recovery.
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Figure 1.5: Regression Lines Between True and Estimated Response Parameters
of the Three-State HMM in Part One of the Simulation. Top facet labels in-
dicate response parameters. Dashed lines refer to perfect recovery. α and β are
the shape and scale parameters of the gamma distributions, andκ is the concen-
tration parameter of the von Mises distribution. Parameter subscripts indicate
states and eye movement features.
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Figure 1.6: Cohen’s Kappa Depending on Which Parameter of the Three-State
HMM Has Been Manipulated in Part One of the Simulation. Top facet labels
indicate for which state parameters have been manipulated. Black solid lines
symbolize medians and hinges the first and third quartile. Whiskers range from
hinges to lowest/highest value within 1.5 times the IQR. Crosses represent out-
liers. ai=j is the probability to stay in the same state, α and β are the shape and
scale parameters of the gamma distributions, and µ and κ are the mean and
concentration parameter of the von Mises distribution.
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Figure 1.7: RMdSPD Between True and Estimated Parameters of the Four-
State HMM in Part One of the Simulation. Labels on the x-axis indicate which
true parameters have been manipulated and labels on the y-axis show for which
estimated parameter the RMdSPD is displayed. Top facet labels specify in
which state the parameters have been varied and right facet labels denote to
which state estimated parameters belong. ρi is the initial probability for state
i (indicated by the right facet label), ai=j is the probability to transition from
state i to state j, α and β are the shape and scale parameters of the gamma
distribu- tions, and µ and κ are the mean and concentration parameter of the
von Mises distribution.
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Figure 1.8: RMdSPD Between True and Estimated Parameters of the Four-
State HMM in Part One of the Simulation. Right facet labels show from and
top facet labels show to which state the HMM is moving. Dashed lines refer to
perfect recovery.
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Figure 1.9: Regression Lines Between True and Estimated Response Parameters
of the Four-State HMM in Part One of the Simulation. Top facet labels indi-
cate response parameters. Dashed lines refer to perfect recovery. α and β are
the shape and scale parameters of the gamma distributions, andµ andκ are the
mean and concentration parameter of the von Mises distribution. Parameter
subscripts indicate states and eye movement features.
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Figure 1.10: Cohen’s Kappa Depending on Which Parameter of the Four-State
HMM Has Been Manipulated in Part One of the Simulation. Top facet labels
indicate for which state parameters have been manipulated. Black solid lines
symbolize medians and hinges the first and third quartile. Whiskers range from
hinges to lowest/highest value within 1.5 times the IQR. Crosses represent out-
liers. ai=j is the probability to stay in the same state, α and β are the shape and
scale parameters of the gamma distributions, and µ and κ are the mean and
concentration parameter of the von Mises distribution.
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Sample Size and Noise Variation

In the second part, we varied the sample size of the HMM and added noise to
the generated data. For the two-state HMM, the RMdSPDs were above 0.5 for
βvel and βacc in both states (see Figure 1.11), suggesting bad recovery. The other
estimated parameters showed RMdSPDs close to or below 0.1, which means
they were recovered well. Increasing the sample size seemed to improve RMd-
SPDs for most parameters slightly. For βvel and βacc in both states, models
with 2500 samples had the lowest RMdSPDs. Accuracy measured by Cohen’s
kappa was almost perfect with kappa values very close to one (see Figure 1.12,
left plot).
For three states, the RMdSPDs for the βvel and βacc were above 0.5 in all three
states (see Figure 1.13), indicating bad recovery. Again, the other estimated pa-
rameters were below or close to 0.1, only a12 and a31 with 500 samples were
closer to 0.5. For most parameters across all three states, models with higher
sample sizes had lower RMdSPDs. The state recovery of the estimated models
was almost perfect with most kappa values above 0.95 (see Figure 1.12, middle
plot). Several outliers clustered around kappa values of zero and -0.33.
RMdSPDs regarding the four-state HMM are displayed in Figure 1.14. For
states one and four, values for most parameters (including all transition prob-
abilities) were above 0.5, suggesting bad recovery. Similarly, βvel and βacc in
states two and three showed bad recovery. For states two and three, higher sam-
ple sizes showed slightly lower RMdSPDs. As in the previous part, most Co-
hen’s kappa values ranged between 0.6 and 0.9, meaning substantial to almost
perfect agreement between true and estimated states (Figure 1.12, right plot).
Multiple outliers clustered around 0.25 or zero.
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Figure 1.11: RMdSPD Between True and Estimated Parameters of the Two-
State HMM in Part Two of the Simulation. Colours indicate different sizes
of generated data. Labels on the y-axis indicate for which estimated parameter
the RMdSPD is displayed. Right facet labels denote to which state estimated
parameters belong. ρi is the initial probability for state i (indicated by the right
facet label), ai=j is the probability to transition from state i to state j, α and β
are the shape and scale parameters of the gamma distributions, and µ and κ are
the mean and concentration parameter of the von Mises distribution.
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Figure 1.12: Cohen’s Kappa Depending on the Variation of Noise Added to the
Simulated Data. The upper labels on the x-axis indicate τnoise and the lower la-
bels κnoise. Colours indicate different sizes of generated data. Top facet labels
indicate the number of states in the HMM. ρi is the initial probability for state
i (indicated by the right facet label), ai=j is the probability to transition from
state i to state j, α and β are the shape and scale parameters of the gamma dis-
tributions, and µ and κ are the mean and concentration parameter of the von
Mises distribution.
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Figure 1.13: RMdSPD Between True and Estimated Parameters of the Three-
State HMM in Part Two of the Simulation. Labels on the y-axis indicate for
which estimated parameter the RMdSPD is displayed. Right facet labels de-
note to which state estimated parameters belong. ρi is the initial probability
for state i (indicated by the right facet label), ai=j is the probability to transi-
tion from state i to state j, α and β are the shape and scale parameters of the
gamma distributions, and µ and κ are the mean and concentration parameter
of the von Mises distribution.
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Figure 1.14: RMdSPD Between True and Estimated Parameters of the Four-
State HMM in Part Two of the Simulation. Labels on the y-axis indicate for
which estimated parameter the RMdSPD is displayed. Right facet labels de-
note to which state estimated parameters belong. ρi is the initial probability
for state i (indicated by the right facet label), ai=j is the probability to transi-
tion from state i to state j, α and β are the shape and scale parameters of the
gamma distributions, and µ and κ are the mean and concentration parameter
of the von Mises distribution.
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1.3.5 Discussion

In the simulation study, we assessed the recovery of parameters and hidden
states in the generative model of gazeHMM. Simulations in part one demon-
strated that the HMM recovered parameters very well when they were manip-
ulated. Deviations from true parameters were mostly small. In the four-state
model, estimated transition probabilities for state one and four deviated mod-
erately. Moreover, the HMM estimated state sequences very accurately with
decreasing accuracy for the four-state model. In the second part, noise was
added to the generated data and the sample size was varied. Despite noise, the
generative model was still able to recover most parameters well. However, in
the four-state model, the parameter recovery for states one and four substan-
tially decreased (even for low amounts of noise, see supplementary material).
In the three- and four-state models, scale parameters of gamma distributions
were poorly recovered (also even for low noise levels, see supplementary mate-
rial). Increasing the sample size in the HMM slightly improved the recovery of
most parameters. The state recovery of the model was slightly lowered when
more states were included, but it was neither affected by the noise level nor
the sample size. In the third part (included in the supplementary material),
we showed that the variation in starting values used to fit the HMM did not
influence parameter and state recovery. Missing data (in part four, also in the
supplementary material) did not affect the parameter recovery but linearly de-
creased the recovery of hidden states. In all four parts, we observed clusters of
outlying accuracy values. In part three, we exploratorily examined these clus-
ters and reasoned that they can be attributed to label switching (i.e., flipping
one or two state labels resolved the outlying clusters).

In general, the generative model recovers parameters and hidden states well
and, thus, we conclude that it can be used in our classification algorithm. How-
ever, the recovery decreases when a fourth state (i.e., smooth pursuit) is added
to the model and, especially with four states, many parameters in the HMM are
vulnerable to noise. In the next sections, we will see how noise that is present
in real eye movement data affects the performance of gazeHMM.

A limitation of this simulation study is that it only concerns the statisti-
cal part of the model, and investigates the ability of the model to recover the
parameter values and state sequences. As such, the simulation study is an im-
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plementation as well as feasibility check of the method. It does not, however,
test accuracy of the final event labels, which are determined using the modeling
output and postprocessing steps. Thus, the simulation might not be entirely
realistic: for example, the generative statistical model is not constrained to al-
low PSO events follow only saccade events, and so this feature of the process
would not be accounted for in the simulation results.

1.4 Validation Study
To validate gazeHMM, we applied the algorithm on two benchmark data sets.
As starting values, we used ρ = 1/k for the initial state model as well as ai=j =

0.9 and ai ̸=j = 0.1/k for the transition model. The values for the response
model are displayed in Table 1.4. For a fifth eye movement event, we chose
starting values that would enable the HMM to split any other event into two
subevents (e.g., fixations into drift and microsaccades). In contrast to the simu-
lation study, generating random starting values often led to bad model fits and
label switching between states. To improve the fitting of the gamma distribu-
tions, velocity and acceleration signals were scaled down by factor 100, and so
were the starting values for their gamma distributions5.

1.4.1 Data Sets
We chose two data sets for validation: One was published in a study by Ander-
sson et al. (2017) and has been widely used for validation purposes (Pekkanen
& Lappi, 2017, e.g.,). It contains eye-tracking data from three conditions: A
static condition, where subjects had to look freely at images, and two dynamic
conditions, where they had to follow a constantly moving dot or objects in a
video. The data were sampled with 500 Hz and two human coders (MN and
RA) labeled them as belonging to six different eye movement events: Fixation,
saccade, PSO, smooth pursuit, blink, or other. Andersson et al. (2017) used the
data to compare 10 different classification algorithms. We adopted their results
to compare these 10 algorithms and the two human coders with gazeHMM.

5Scaling down by factor 100 differs from the simulation study (scaling down by 10). The
algorithm allows the user to manually specify this factor, and in this case, factor 100 led to better
model fits than factor 10.
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Velocity Acceleration Rel. angle

α β α β µ κ

Fixation 10 10 10 10 - -
Saccade 50 50 50 50 0 10

PSO 50 50 50 50 π 10
Pursuit 20 20 20 20 0 10
Event 5 20 20 50 50 0 10

Table 1.4: Starting Values for the Response Model in the Validation Study.
Starting values for velocity and acceleration signals are shown before scaling
down by factor 100. Shape parameters are denoted by α, scale parameters by β,
mean parameters by µ, and concentration parameters by κ.

We used the original data from the study but removed two recordings from
the moving dots condition because they majorly contained samples labeled as
“other” or blinks. Moreover, the recordings could not be matched to the results
obtained by Andersson et al. (2017).6

The second data set was published in Ehinger, Groß, Ibs, and Peter (2019)
and has to our knowledge not yet been used for validation. Here, we only took
tasks four and five out of 10 tasks because these are qualitatively different from
the first data set. In task four, subjects were instructed to fixate a central target
for 20 s. Task 5 was set up similarly, but subjects had to blink when they heard
one out of seven beeps (with a beep duration of 100 ms and 1.5 s intervals in be-
tween). Eye movements were recorded with 500 Hz for 10 participants and 250
Hz for 5 participants due to a technical mistake (Ehinger et al., 2019). We used
only data obtained by the EyeLink (SR Research Ltd., Ontario, Canada) eye-
tracker and excluded recording using PupilLabs glasses, as wearable eye-tracker
violates our methods’ definition of frame of reference (R. S. Hessels et al., 2018).

6Two recordings from the moving dots conditions were substantially longer than the other
recordings in the condition and contained more samples than were classified by the algorithms
in the study by Andersson et al. (2017). Since no sample indices were available in the data set,
we could not match samples from the two recordings to the labels assigned by the algorithms
and therefore decided to remove them from the analysis. We do not expect the conclusions of
our analyses to depend on these two data sets.



1.4. VALIDATION STUDY 51

1.4.2 Data Analysis

Successful validation of gazeHMM was determined by two approaches: First,
we applied gazeHMM with generative models containing 1-5 states to both data
sets. The fits of the generative models were compared using Schwarz weights
(Wagenmakers & Farrell, 2004), a conversion of the BIC (Schwarz, 1978) into
model weights. They can be interpreted as the probability of a model having
generated the data compared to the competing models. For the static condition
in the Andersson et al. (2017) data set, we expected the generative model with
three states (fixation, saccade, and PSO), and for the dynamic conditions the
model with four states (incl. smooth pursuit) to display the highest Schwarz
weight. Regarding the Ehinger et al. (2019) data set, we assumed that the one-
state model (only fixation) would show the highest weights for both tasks.

The algorithm was applied separately to every subject, condition/task. For
the Andersson et al. (2017) data set, all generative models were successfully fit-
ted, whereas, for the Ehinger et al. (2019) data set, it was only 780 out of 900
models (87%, 60 models per task). The erroneous model fits in the Ehinger et
al. (2019) data occurred when applying HMMs with three states or more. We
attribute them to low variance in the data (i.e., it is difficult to fit data where sub-
jects only fixate the same location with an HMM that assumes three or more
states/events).

Second, we compared gazeHMM to other algorithms and human coders.
We applied our algorithm with a three-state generative model to the static con-
dition in the Andersson et al. (2017) data set, and with a four-state model to
the dynamic conditions. For comparison criteria, we followed Andersson et
al. (2017): We calculated the RMSD of event durations and counts between
all algorithms and the average of the two human coders. Our results differ
slightly from the original study because we excluded two recordings (leading
to fewer events) and calculated the event durations as Dur(e) = max(te) −
max(te−1), where te is the vector of sample time stamps for the event e. Co-
hen’s kappa was calculated for each event as the binary agreement between the
algorithms and the average of the human coders. Lastly, the overall disagree-
ment indicated which samples were classified differently by the algorithms com-
pared to the average of the human coders across all events. The human coders
were compared directly to each other.
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1.4.3 Results
Model Comparison

Examining the Schwarz weights displayed in Figure 1.15, we observed that the
five-state generative model showed the highest weights in all three conditions.
Only in the moving dots condition, two subjects displayed the highest weights
for the four-, and one subject for the three-state model. In sum, we concluded
that the five-state generative model has most likely generated the Andersson et
al. (2017) data, opposing our expectations. Because the Ehinger et al. (2019)
data set showed a similar pattern, we included the results for this data in the
supplementary material.

A recent model recovery study showed that the BIC tended to prefer overly
complex HMMs when they were misspecified (e.g., the conditional indepen-
dence assumption was violated; Pohle, Langrock, van Beest, & Schmidt, 2017).
Instead, the integrated completed likelihood (ICL) criterion (Biernacki, Celeux,
& Govaert, 2000) performed better at choosing the correct data-generating
model. Therefore, we post hoc computed the weighted ICL criterion (anal-
ogous to Schwarz weights) for the models fitted to the Andersson et al. (2017)
data set. Using the ICL as the model selection criterion yielded very similar re-
sults to the BIC (see supplementary material). The preference for the five-state
generative model was even more consistent across conditions and subjects.
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Figure 1.15: Schwarz Weights Displayed for Each Subject and HMMs With Dif-
ferent Numbers of States. Top facet labels indicate the condition in the Ander-
sson et al. (2017) data set. Higher weights indicate a better model fit.

Comparison to Other Algorithms

As displayed in Table 1.5, gazeHMM showed a relatively low RMSD for fixa-
tions in the static condition compared to the other algorithms that were applied
to the Andersson et al. (2017) data set. The lower RMSD for fixations indicated
more similar classification to the human coders in terms of their mean and SD
duration as well as the number of classified fixations. Oppositely, for fixations
in the dynamic conditions, the RMSD of gazeHMM was one of the highest
among the compared algorithms, suggesting substantial differences to the hu-
man coders. It can be seen that gazeHMM classified a much larger number of
fixations with very short durations. For saccades, gazeHMM had a relatively
high RMSD for the static condition but the lowest RMSD for the moving
dots condition, and a moderate value for the video condition (see Table 1.6).
The deviation was mostly because gazeHMM classified a higher number of sac-
cades than the human coders. Only two other algorithms classified PSOs (NH
and LNS; Larsson et al., 2013; Nyström & Holmqvist, 2010). Here, gazeHMM
showed a consistently higher RMSD than LNS and lower RMSD than NH
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(see Table 1.7). Our algorithm classified shorter and more PSOs than the hu-
man coders. No other algorithm parsed smooth pursuits, but the RMSD for
gazeHMM was higher than among human coders (see Table 1.8). Again, it clas-
sified a much larger number of smooth pursuits with short durations.

Table 1.9 contains the sample-to-sample agreement between the algorithms
and human coders measured by Cohen’s kappa. For fixations, gazeHMM
showed one of the highest agreements for static and the highest agreements
for dynamic data. The absolute agreement was substantial for the static and
slight to fair for the dynamic conditions (Landis & Koch, 1977). For saccades,
gazeHMM had the lowest agreement for the static condition and moderate
agreement for the dynamic conditions. In absolute terms, the agreement was
fair to moderate. Concerning PSOs, gazeHMM showed higher agreement than
NH in the image and video conditions but consistently lower agreement com-
pared to LNS. The absolute agreement was slight (image) to moderate (video).
Lastly, the agreement for smooth pursuit was lower compared to the human
coders and fair in absolute values.

Concerning overall disagreement, Figure 1.16 shows that gazeHMM had
less disagreement to the human coders across all events for the dynamic con-
ditions. For the static condition, we interpreted the difference to most other
algorithms as slight (Med(∆) = 2.65%), but for the dynamic conditions, as
substantial (video: Med(∆) = 17.19%) and large (dots: Med(∆) = 50.04%).

To explore which events gazeHMM classified differently than the average
human coder, we looked at the confusion matrix between the two (see Table
1.10). It can be seen that gazeHMM classified many fixation samples as smooth
pursuit samples and vice versa. Moreover, it confused many PSOs with sac-
cade samples. The heuristic to detect blinks seemed to work successfully since
gazeHMM classified most blink samples in agreement with human coding and
only a minor part was mistaken for saccades. Inspecting an example of gaze data
classified by gazeHMM compared to human coding leads to a similar notion:
Figure 1.17 illustrates that gazeHMM is rapidly switching between classifying
fixations and smooth pursuits, whereas the human coder identified one large
smooth pursuit event. In the example, gazeHMM also disagrees with the hu-
man coder regarding the start of the PSO.
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Image Moving dots Video

Algorithm Mean SD Events RMSD Mean SD Events RMSD Mean SD Events RMSD

coderMN 275 285 403 0.02 186 93 11 0.02 338 303 82 0.16
coderRA 271 287 391 0.02 174 94 12 0.02 255 185 81 0.16
gazeHMM-3 165 256 578 0.71 - - - - - - - -
gazeHMM-4 - - - - 16 17 381 1.12 22 25 1,243 1.18
CDT 465 643 276 1.44 60 115 177 0.44 244 354 226 0.18
IDTk 488 579 263 1.39 968 1,171 17 1.87 984 1,596 62 1.82
IKF 190 258 518 0.68 270 203 51 0.2 286 315 173 0.18
IMST 360 471 351 0.9 912 1,159 18 1.79 695 1,059 87 1.16
IHMM 148 236 717 0.72 316 298 47 0.34 259 348 207 0.18
IVT 127 223 843 0.73 292 298 51 0.31 225 334 240 0.18
NH 282 318 297 0.58 392 336 31 0.5 462 381 89 0.48
BIT 230 162 439 0.79 194 108 66 0.13 264 225 183 0.22

Table 1.5: Fixation Duration Descriptives and RMSD Between Algorithms and
Human Coders. Durations are displayed in milliseconds. gazeHMM-3 classi-
fied three and gazeHMM-4 classified four events. RMSD = root mean square
deviation. Table design adapted from Andersson et al. (2017).

Image Moving dots Video

Algorithm Mean SD Events RMSD Mean SD Events RMSD Mean SD Events RMSD

coderMN 32 16 377 0.12 23 11 38 0.06 27 12 117 0.1
coderRA 34 14 374 0.12 22 12 38 0.06 27 11 127 0.1
gazeHMM-3 39 29 657 0.84 - - - - - - - -
gazeHMM-4 - - - - 27 12 46 0.22 30 20 153 0.5
EK 27 24 787 0.98 18 13 59 0.49 22 18 252 1.08
IDTk 28 19 258 0.49 34 11 6 0.58 26 19 53 0.63
IKF 70 40 356 1.52 62 29 21 1.45 62 25 107 1.22
IMST 19 12 336 0.77 13 5 13 1.1 20 10 76 0.77
IHMM 54 28 370 0.75 41 19 19 0.63 46 18 109 0.46
IVT 46 25 375 0.48 35 14 20 0.33 40 17 112 0.25
NH 56 21 344 0.59 44 14 33 0.39 47 17 104 0.46
LNS 33 13 390 0.36 27 11 42 0.28 30 10 122 0.4

Table 1.6: Saccade Duration Descriptives and RMSD Between Algorithms and
Human Coders. Durations are displayed in milliseconds. gazeHMM-3 classi-
fied three and gazeHMM-4 classified four events. RMSD = root mean square
deviation. Table design adapted from Andersson et al. (2017).
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Image Moving dots Video

Algorithm Mean SD Events RMSD Mean SD Events RMSD Mean SD Events RMSD

coderMN 25 14 313 0.68 14 5 24 0.63 23 13 97 0.43
coderRA 25 12 310 0.68 14 8 19 0.63 21 12 89 0.43
gazeHMM-3 14 15 518 1.48 - - - - - - - -
gazeHMM-4 - - - - 6 8 21 0.95 18 14 101 1.04
NH 31 15 237 1.54 23 13 11 1.25 31 20 78 1.19
LNS 30 15 319 1.19 20 8 21 0.54 30 19 87 0.82

Table 1.7: PSO Duration Descriptives and RMSD Between Algorithms and
Human Coders. Durations are displayed in milliseconds. gazeHMM-3 classi-
fied three and gazeHMM-4 classified four events. RMSD = root mean square
deviation. Table design adapted from Andersson et al. (2017).

Image Moving dots Video

Algorithm Mean SD Events RMSD Mean SD Events RMSD Mean SD Events RMSD

coderMN 363 187 3 0.23 370 238 36 0.4 559 391 51 0.14
coderRA 299 180 17 0.23 345 338 39 0.4 516 376 70 0.14
gazeHMM-4 - - - - 23 22 400 1.97 21 23 1,281 1.95

Table 1.8: Smooth Pursuit Duration Descriptives and RMSD Between
gazeHMM and Human Coders. Durations are displayed in milliseconds.
gazeHMM-3 classified three and gazeHMM-4 classified four events. RMSD =
root mean square deviation. Table design adapted from Andersson et al. (2017).

Fixations Saccades PSOs Smooth pursuits

Algorithm Image Dots Video Image Dots Video Image Dots Video Image Dots Video

coderMN 0.84 0.84 0.65 0.91 0.79 0.87 0.76 0.57 0.65 0.34 0.81 0.66
coderRA 0.84 0.84 0.65 0.91 0.79 0.87 0.76 0.57 0.65 0.34 0.81 0.66
gazeHMM-3 0.67 - - 0.36 - - 0.19 - - 0 - -
gazeHMM-4 - 0.16 0.17 - 0.62 0.51 - 0.24 0.46 - 0.28 0.2
CDT 0.38 0.07 0.11 0 0 0 0 0 0 0 0 0
EK 0 0 0 0.64 0.73 0.67 0 0 0 0 0 0
IDTk 0.36 0 0.03 0.45 0.25 0.38 0 0 0 0 0 0
IKF 0.63 0.04 0.14 0.58 0.43 0.59 0 0 0 0 0 0
IMST 0.38 0 0.03 0.54 0.31 0.52 0 0 0 0 0 0
IHMM 0.67 0.03 0.13 0.69 0.58 0.71 0 0 0 0 0 0
IVT 0.67 0.03 0.13 0.75 0.59 0.76 0 0 0 0 0 0
NH 0.52 -0.23 0.01 0.67 0.58 0.68 0.24 0.14 0.25 0 0 0
BIT 0.67 0.02 0.14 0 0 0 0 0 0 0 0 0
LNS 0 0 0 0.81 0.75 0.81 0.64 0.56 0.63 0 0 0

Table 1.9: Cohen’s Kappa Between Human Coders and Algorithms for Dif-
ferent Conditions and Events. gazeHMM-3 classified three and gazeHMM-4
classified four events. Table design adapted from Andersson et al. (2017).
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Figure 1.16: Disagreement Between Algorithms and Human Coders for Differ-
ent Conditions. gazeHMM-3/4 classified three events for image data and four
events for moving dots/video data. Algorithms are displayed in order according
to mean disagreement over conditions (least/left to highest/right).
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Event Fixation Saccade PSO Pursuit Blink Other

Image
Fixations 0.88 0.08 0.08 0.72 0.07 0.03
Saccades 0.07 0.59 0.63 0.22 0.14 0.20
PSOs 0.04 0.08 0.23 0.03 0.05 0.16
Pursuits 0.00 0.00 0.00 0.00 0.00 0.00
Blinks 0.01 0.26 0.06 0.03 0.74 0.61

Moving dots
Fixations 0.61 0.01 0.02 0.35 0.00 0.30
Saccades 0.01 0.78 0.60 0.03 0.00 0.48
PSOs 0.01 0.04 0.18 0.00 0.00 0.00
Pursuits 0.28 0.05 0.17 0.62 0.00 0.20
Blinks 0.10 0.12 0.04 0.00 0.00 0.02

Video
Fixations 0.54 0.04 0.02 0.44 0.00 0.00
Saccades 0.02 0.57 0.35 0.02 0.14 0.82
PSOs 0.01 0.13 0.47 0.01 0.03 0.05
Pursuits 0.42 0.03 0.12 0.54 0.01 0.00
Blinks 0.00 0.23 0.04 0.00 0.82 0.14

Table 1.10: Confusion Matrix Between gazeHMM (Rows) and Human Coders
(Columns) for Different Conditions. gazeHMM classified four events and
blinks. Values indicate proportions of samples where gazeHMM and human
coders agree divided by the total number of samples classified by the human
coders for each event (i.e., columns sum to one).
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Figure 1.17: Classification of Example Data by Andersson et al. (2017). Data
displayed as x-, and y-coordinates (in deg, upper two panels), velocity (in deg/s,
middle panel), acceleration (in deg/s2, fourth panel), and sample-to-sample
(relative) angle (in radians, bottom panel). The top-most panel displays event
classification by gazeHMM, coderMN, and coderRA, highlighted by color.
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1.5 Conclusion & Discussion
In this report, we presented gazeHMM, a novel algorithm for classifying gaze
data into eye movement events. The algorithm models velocity, acceleration,
and sample-to-sample angle signals with gamma distributions and a mixture of
von Mises and a uniform distribution. An HMM serves as the generative model
of the algorithm and classifies the gaze samples into fixations, saccades, and
optionally PSOs, and/or smooth pursuits. We showed in a simulation study
that the generative model of gazeHMM recovered parameters and hidden state
sequences well. However, adding a fourth event (i.e., smooth pursuit) to the
model and introducing even small amounts of noise to the generated data led
to decreased parameter recovery. Importantly, however, it did not lead to de-
creased hidden state recovery. Thus, the classification of the generative model
should not be negatively affected by noise. Furthermore, we applied gazeHMM
with different numbers of states to benchmark data by Andersson et al. (2017)
and compared the model fit. The model comparison revealed that a five-state
HMM had consistently most likely generated the data. This result opposed our
expectation that a three-state model would be preferred for static and a four-
state model for dynamic data. When comparing gazeHMM against other algo-
rithms, gazeHMM showed mostly good agreement to human coding. On one
hand, it outperformed the other algorithms in the overall disagreement with
human coding for dynamic data. On the other hand, gazeHMM confused a
lot of fixations with smooth pursuits, which led to rapid switching between
the two events. It also tended to mistake PSO samples as belonging to saccades.

Considering the results of the simulation study, it seems reasonable that
adding the smooth pursuit state to the HMM decreased parameter and state
recovery: It is the event that is overlapping most closely with another event
(fixations) in terms of velocity, acceleration, and sample-to-sample angle. The
overlap can cause the HMM to confuse parameters and hidden states. The
decrease in parameter recovery (especially for scale parameters) due to noise
shows that the overlap is enhanced by more dispersion in the data. The scale
parameters might be particularly vulnerable to extreme data points. Despite
these drawbacks, the recovery of the generative model in gazeHMM seems very
promising. The simulation study gives also an approximate reference for the
maximum recovery of hidden states that can be achieved by the HMM (Co-
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hen’s kappa values of ~1 for two, ~0.95 for three, and ~0.8 for four events).

The model comparison on the benchmark data suggested that the genera-
tive model in gazeHMM is not yet optimally specified for eye movement data.
There are several explanations for this result:

The model subdivided some events into multiple events, or found additional
patterns in the data that do not fit the other four events the model was built for.
Eye movement events can be divided into subevents. For example, fixations
consist of drift and tremor movements (Duchowski, 2017) and PSOs encom-
pass dynamic, static, and glissadic over- and undershoots (Larsson et al., 2013).
A study on a recently developed HMM algorithm supports this explanation:
Houpt et al. (2018) applied the unsupervised BP-AR-HMM algorithm to the
Andersson et al. (2017) data set and classified more distinct states than the hu-
man coders. Some of the states classified by BP-AR-HMM matched the same
event coded by humans. Since the subevents are usually not interesting for users
of classification algorithms, the ability of HMMs to classify might limit their
ability to generate eye movements.

Model selection criteria are generally not appropriate for comparing HMMs
with different numbers of states. This argument has been discussed in the field
of ecology (see Li & Bolker, 2017), where studies found that selection crite-
ria preferred models with more states than expected (similar to the result of
this study; e.g., Langrock, Kneib, Sohn, & Deruiter, 2015). Li and Bolker
(2017) explain this bias with the simplicity of the submodels in HMMs: Ini-
tial state, transition, and response models for each state are usually relatively
simple. When they do not describe the processes in the respective states ac-
curately, the selection criteria compensate for that by preferring a model with
more states. Thus, there are not more latent states present in the data, but the
submodels of the HMM are misspecified or too simple, potentially leading to
spurious, extra, states being identified in the model selection process, see dis-
cussion and potential solutions in Kuijpers, Visser, and Molenaar (2021). Cor-
recting for model misspecifications led to a better model recovery in studies on
animal movements (Langrock et al., 2015; Li & Bolker, 2017). However, Pohle
et al. (2017) showed in simulations that the ICL identified the correct model de-
spite several misspecifications. It has to be noted that the study by Pohle et al.
(2017) only used data generating models with two states, so it needs to be veri-
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fied whether this approach will work in the larger models that are being studied
here.

The submodels of gazeHMM were misspecified. Pohle et al. (2017) identi-
fied two scenarios in which model recovery using the ICL did not give optimal
results: Outliers in the data and inadequate distributions in the response mod-
els. Both situations could apply to gazeHMM and eye movement data: Outliers
occur frequently in eye-tracking data due to measurement error. Choosing ad-
equate response distributions in HMMs is usually difficult and can depend on
the individual and task from which the data are obtained (Langrock et al., 2015).
Moreover, gazeHMM only estimated intercepts for all parameters and thus, no
time-varying covariates were included (cf. Li & Bolker, 2017). This aspect could
indeed oversimplify the complex nature of eye movement data.

Comparing gazeHMM to other algorithms on benchmark data showed
that gazeHMM showed good agreement with human coders. However, the
evaluation criteria (RMSD of event durations, sample-to-sample agreement,
and overall disagreement) yielded different results. The fact that gazeHMM
outperformed all other algorithms regarding the overall disagreement can be
because it is the only algorithm classifying all five events the human coders clas-
sified; algorithms that do not classify certain type of even will, by definition,
disagree with human coders on samples that they classified as such. As the num-
ber of samples in different events depending on the stimuli (e.g., a lot of smooth
pursuit in moving dots condition but virtually none in static images), different
methods might be penalized differently depending on the condition and type
of event they do not classify. Nevertheless, Cohen’s kappa values of 0.67 (fixa-
tions - image) or 0.62 (saccades - moving dots) indicate substantial agreement
to human coders, especially in light of the maximum references from the sim-
ulation study. At this point, it is important to mention that human coding
should not be considered a gold standard in event classification: Hooge et al.
(2018) observed substantial differences between coders and within coders over
time. Despite these differences, they recommend comparisons to human cod-
ing to demonstrate the performance of new algorithms and to find errors in
their design.
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1.5.1 Advantages of gazeHMM

Given the four proposed goals that gazeHMM should fulfill, we can draw the
following conclusions: Even though gazeHMM does require some parameter
settings (in the pre- and postprocessing), it estimates many parameters adap-
tively from the data; as a result, compared to many other algorithms, it reduces
the influence of human judgement and researcher decisions on the classifica-
tion result. The parameters are merely included to compensate for the draw-
backs of the generative model and their default values should be appropriate
for most applications. A major advantage of gazeHMM is that it does not re-
quire human-labeled data as input. Instead, it estimates all parameters and hid-
den states from the data. Since human coding is quite laborious, difficult to
reproduce, and by times inconsistent (as noted earlier, Hooge et al., 2018), this
property makes gazeHMM a good alternative to other recently developed algo-
rithms that require human coded input (Bellet et al., 2019; Pekkanen & Lappi,
2017; Zemblys et al., 2018). This could also explain why the agreement to hu-
man coding is lower for gazeHMM than for algorithms that learn from human-
labeled data.

Another advantage of gazeHMM is its ability to classify four eye move-
ment events, namely fixations, saccades, PSOs, and smooth pursuit. Whereas
most algorithms only parse fixations and saccades (Andersson et al., 2017), few
classify PSOs (e.g., Zemblys et al., 2018), and even less categorize smooth pur-
suits (e.g., Pekkanen & Lappi, 2017). However, including smooth pursuits in
gazeHMM led to some undesirable classifications on benchmark data, result-
ing in rapid switching between fixation and smooth pursuit events. There-
fore, we recommend using gazeHMM with four events only for exploratory
purposes. Without smooth pursuits, we consider gazeHMM’s classification as
appropriate for application. Lastly, its implementation in R using depmixS4
(Visser & Speekenbrink, 2010) should make gazeHMM a tool that is easy to
use and customize for individual needs.

To conclude, our methods shows promising results in terms of ability to
classify various eye movement events, does not require previously labeled data,
and reduces the number of arbitrary settings determined by the researcher. As
such, in case the ultimate goal is event classification, the method is a good can-
didate for initial rough estimate of the event classification, which can be further
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inspected and refined, if necessary. Compared to other approaches, the method
is also easily extensible and modifiable, allows for model comparison, and as
such offers applications where broadening our understanding of eye movement
is of primary interest instead of the event classification itself.

1.5.2 Future Directions
Despite its advantages, there are several aspects in which gazeHMM can be im-
proved: First, a multivariate distribution could be used to account for the corre-
lation between velocity and acceleration signals (for examples, see Balakrishnan
& Lai, 2009). Potential problems of this approach might be choosing the right
distribution and convergence issues (due to a large number of parameters). An-
other option to model the correlation could be to include one of the response
variables as a covariate of the other.

Second, instead of the gamma being the generic (and potentially inappro-
priate) response distribution, a non-parametric approach could be used: Lan-
grock et al. (2015) use a linear combination of standardized B-splines to approxi-
mate response densities, which led to HMMs with fewer states being preferred.
This approach could potentially combat the problem of unexpectedly high-
state HMMs being preferred for eye movement data but would also undermine
the advantages of using a parametric model.

Third, one solution to diverging results when comparing gazeHMM with
different events could be model averaging: Instead of using the maximum pos-
terior state probability of each sample from the preferred model, the probabil-
ities could be weighted according to a model selection criterion (e.g., Schwarz
weight) and averaged. Then, the maximum averaged probability could be used
to classify the samples into events. This approach could lead to a more robust
classification because it reduces the overconfidence of each competing model
and easily adapts to new data (analogous to Bayesian model averaging; Hinne,
Gronau, van den Bergh, & Wagenmakers, 2020). However, the model compar-
ison for gazeHMM often showed extreme weights for a five-state model, which
would lead to a very limited influence of the other models in the averaged prob-
abilities.

Fourth, including covariates of the transition probabilities and response
parameters could improve the fit of gazeHMM on eye movement data. As
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pointed out earlier, just estimating intercepts of parameters could be too sim-
ple to model the complexity of eye movements. A candidate for such a covari-
ate might be a periodic function of time (Li & Bolker, 2017) which could, for
instance, capture the specific characteristics of saccades, e.g., the tendency of
increasing velocity at the start of the saccade and decreasing velocity at the end
of the saccade. Whether covariates are improving the fit of submodels to eye
movement data could in turn be assessed by inspecting pseudo-residuals and
autocorrelation functions (Zucchini et al., 2016).

Fifth, to avoid rapid switching between fixations and smooth pursuits as
well as unreasonably short saccades, gazeHMM could explicitly model the du-
ration of events. This can be achieved by setting the diagonal transition proba-
bilities to zero and assign a distribution of state durations to each state (Bishop,
2006). Consequently, the duration distributions of fixations and smooth pur-
suits could differ from saccades and PSOs. This extension of the HMM is also
called the hidden semi-Markov model and has been successfully used by Mihali
et al. (2017) to classify microsaccades. Drawbacks of this extension are higher
computational costs and difficulties with including covariates (Zucchini et al.,
2016).

Lastly, allowing constrained parameters in the HMM could replace some
of the postprocessing steps in gazeHMM. This could potentially be achieved
by using different response distributions or parameter optimization methods.
Moreover, switching from the maximum likelihood to the Markov chain Monte
Carlo (Bayesian) framework could help to avoid convergence problems with
constrained parameters, but would also open new research questions about
suitable priors for HMM parameters in the eye movement domain, efficient
sampling plans, accounting for label switching, and computational efficiency,
naming only a few.

1.5.3 Conclusion
In the previous sections, we developed and tested a generative, HMM-based al-
gorithm called gazeHMM. Both a simulation and validation study showed that
gazeHMM is a suitable algorithm for simulating, understanding and classify-
ing eye movement events. For smooth pursuits, the classification is not optimal
and thus not yet recommended. On one side, the algorithm has some advan-
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tages over concurrent event classification algorithms, not relying on human-
labeled training data being the most important one. On the other side, it is
not able to identify expected events in model comparisons. The current model
constitutes a proof-of-principle that a generative, maximum-likelihood based
approach can provide interpretable and reliable results that are at least as good
as other approaches under some circumstances. The largest advantage of this
approach is however that it provides the possibility to rigorously test progress
in developing extensions and improvements.

Open Practices Statement
The simulation study was preregistered; the preregistration is available at osf
.io/vdjgp. The gazeHMM implementation is available as an R package at
github.com/maltelueken/gazeHMM. The analysis code is available atgithub
.com/maltelueken/gazeHMM_validation.

https://osf.io/vdjgp
https://osf.io/vdjgp
https://github.com/maltelueken/gazeHMM
https://github.com/maltelueken/gazeHMM_validation
https://github.com/maltelueken/gazeHMM_validation
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Abstract
Describing, analyzing and explaining patterns in eye movement behavior is crucial

for understanding visual perception. Further, eye movements are increasingly used in
informing cognitive process models. In this article, we start by reviewing basic charac-
teristics and desiderata for models of eye movements. Specifically, we argue that there
is a need for models combining spatial and temporal aspects of eye-tracking data (i.e.,
fixation durations and fixation locations), that formal models derived from concrete
theoretical assumptions are needed to inform our empirical research, and custom sta-
tistical models are useful for detecting specific empirical phenomena that are to be ex-
plained by said theory.

In this article, we develop a conceptual model of eye movements, or specifically,
fixation durations and fixation locations, and from it derive a formal statistical model
— meeting our goal of crafting a model useful in both the theoretical and empirical
research cycle. We demonstrate the use of the model on an example of infant natural
scene viewing, to show that the model is able to explain different features of the eye
movement data, and to showcase how to identify that the model needs to be adapted
if it does not agree with the data. We conclude with discussion of potential future
avenues for formal eye movement models.

2.1 Introduction

Asonlyarelatively smallregionon the retina provides the high-
est detail of the visual input, the human visual system heavily relies on
the ability to control the gaze and movement of the eye over a stim-

ulus (Duchowski, 2017). Much of the current research intends to determine
the mechanisms and factors1 that guide visual attention through fixations and
saccades, i.e., periods of fixing the visual input relatively steady on the retina
and periods of abrupt movements, respectively, as understanding these mecha-
nisms provides insights into visual and attentional control and their impact on
perception. Additionally, studying eye movements is not only essential for un-
derstanding perception and attentional control but can also inform variety of
other topics, such as the study of higher cognitive processes like decision rules
in economic games (Polonio, Di Guida, & Coricelli, 2015), strategic differences
in analogical reasoning tasks (Hayes, Petrov, & Sederberg, 2015; Kucharský et

1Throughout the article, we use the term “factor” as “a circumstance, fact, or influence that
contributes to a result” without having a specific functional form of the relationship in mind.
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al., 2020), or individual assessment (Chen et al., 2014), to name a few.

Previous research distinguishes the mechanisms and factors that guide vi-
sual attention into three groups (Itti & Borji, 2014; Schütt et al., 2017; Tatler
& Vincent, 2008). These groups can be roughly described as bottom-up, top-
down, and systematic tendencies. The bottom-up factors include features of
the visual environment, such as distribution of colors and contrast across the
visual field, etc. Many of the so called saliency models aim to determine and
detect these features (Itti & Koch, 2001; Tatler, Hayhoe, Land, & Ballard, 2011;
J. Xu, Jiang, Wang, Kankanhalli, & Zhao, 2014). The top-down factors and
mechanisms include characteristics and states of the observer, such as their
motivation, purpose, task, (background) knowledge or individual differences
(De Haas, Iakovidis, Schwarzkopf, & Gegenfurtner, 2019). The third group in-
cludes factors that are neither purely bottom-up (i.e., not necessarily tied to fea-
tures in the environment) nor top-down (i.e., not necessarily unique to states
or characteristics of observers), but rather experimentally observed phenom-
ena (Tatler & Vincent, 2008). Systematic tendencies are believed to be rela-
tively stable across stimuli, participants and tasks, such as fixation biases (e.g.,
central bias; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, & Itti, 2009; van
Renswoude, van den Berg, Raijmakers, & Visser, 2019) or saccadic biases (e.g.,
horizontal and leftward bias; Foulsham, Frost, & Sage, 2018; Foulsham, Gray,
Nasiopoulos, & Kingstone, 2013; Le Meur & Liu, 2015; van Renswoude, John-
son, Raijmakers, & Visser, 2016).

Apart from experimental work establishing individual factors that influ-
ence gaze behavior, important aspect of understanding the mechanism behind
the observed behavior is proposing theoretical and statistical models that are
able to describe, explain, or predict empirical data and observed phenomena.
There are many models with varying levels of abstraction, theoretical substance,
the phenomena they aim to explain, and the type and level of data they are able
to explain (Le Meur & Liu, 2015; Malem-Shinitski et al., 2020; Nuthmann,
2017; Reichle & Sheridan, 2015; Schwetlick, Rothkegel, Trukenbrod, & Eng-
bert, 2020; Schütt et al., 2017; Tatler, Brockmole, & Carpenter, 2017; Truken-
brod & Engbert, 2014; Zelinsky, Adeli, Peng, & Samaras, 2013). In this article,
we develop a new conceptual model of eye movements, and flesh it out in the
form of a statistical model.
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2.1.1 Model requirements

Two prominent questions regarding eye movement behavior that require ex-
planation are when and where (Findlay & Walker, 1999; Tatler et al., 2017), i.e.,
what is the mechanism behind the timing of saccades and fixation durations,
and what is the mechanism behind selecting fixation locations. Predominantly,
these questions are asked separately by building models explaining either fixa-
tion durations or fixation locations (Nuthmann, Smith, Engbert, & Hender-
son, 2010; Schütt et al., 2017; Tatler et al., 2017). However, better understanding
of visual behavior is perhaps only possible when considering where and when
people look simultaneously (Tatler et al., 2017). It is of interest to consider spa-
tial and temporal phenomena in one model, as these are likely not independent
of each other (e.g., J. M. Henderson, Nuthmann, & Luke, 2013; Nuthmann,
2017). In this article, we propose a new account of how to model eye move-
ments both spatially and temporally in a joint framework.

One of the critical features of theory driven models of any behavior is the
ability to generate data, given its set of assumptions. This enables to assess
whether a model is successful in generating phenomena that are putatively ex-
plained by said theory (Borsboom, van der Maas, Dalege, Kievit, & Haig, 2020;
Robinaugh, Haslbeck, Ryan, Fried, & Waldorp, 2020), and also makes it pos-
sible to make counterfactual investigations. That is, we might use it to answer
the question “according to the model, what would have happened if something
would have occurred, but it did not?”, which is useful for hypothesis gener-
ation and essentially more precise testing of theories underlying the models
(e.g., Nuthmann et al., 2010). This is generally a useful approach that enables
to check the explanatory adequacy of the underlying theory, inform us about
where to look for crucial piece of evidence, and as such serving a crucial part of
the theoretical cycle (Borsboom et al., 2020). Building data generative models
of eye movements has a long tradition in the eye-tracking literature. In fact, the
traditional approach to evaluate eye movement models typically involves sim-
ulating eye movement data from a model and comparing the synthetic data to
experimentally established phenomena (Schütt et al., 2017).

Additionally to being used as generative models, formal modelling ap-
proaches are widely used in the empirical cycle as well in form of statistical mod-
els, where they play a crucial role in detecting and establishing new phenomena



2.1. INTRODUCTION 71

from the collected data (Wagenmakers, Dutilh, & Sarafoglou, 2018). Thus, as
dynamic models of eye movements gain importance in theoretical and experi-
mental research, parameter estimation and model comparison are also gaining
importance. This requires being able to specify a model as a statistical model
(i.e., a probability distribution of the data given a set of parameters) that can be
used to estimate the parameters (either using maximum likelihood or Bayesian
approaches), and use the statistical machinery for assessing the uncertainty in
parameter estimates and to conduct model comparisons (e.g., Malem-Shinitski
et al., 2020; Schütt et al., 2017).

Detecting new phenomena is of great interest for eye movement researchers.
For example, in studying phenomena such as the central bias (i.e., relative pref-
erence to focus on the center of the screen compared to other areas), there is an
ongoing debate whether it can be explained away as a manifestation of bottom-
up effects (such as distributions of objects on the screen) or whether it is a real
systematic bias somehow ingrained in our visual system, and how to disentan-
gle these explanations (Tatler, 2007; Tseng et al., 2009; van Renswoude et al.,
2019). Having a possibility to modify the model such that it includes or ex-
cludes the central bias, would enable us to pit these explanations against each
other. Through model comparison and parameter estimation, we can then as-
sess whether and quantify to what extent these different factors come into play.
Thus, it is important that a model can be modified to include, exclude or mod-
ify the functional form of the effect of different factors or mechanisms influ-
encing the eye movement behavior.

Furthermore, it is highly likely that eye movement characteristics will de-
pend on individual differences, differences between different populations, or
within-person differences due to development (De Haas et al., 2019). It is thus
important to be able to model these differences in one coherent modeling frame-
work by allowing to specify parameters in the model to e.g., differ between pop-
ulations or as random terms in a hierarchical fashion.

Models that are possible to use both in the theoretical cycle (i.e., as formal
manifestations of a theory to check that the theory explains phenomena that
it set out to explain) and empirical cycle (i.e., to assess the evidence for new
phenomena that need explanation) are generally difficult to develop and rare,
so rare that these two purposes of scientific models are often discussed as com-
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pletely separate entities (Smaldino, 2017). However, having a model that is both
statistical and informed by the underlying theory often offers deeper insights
into the underlying mechanisms (Borsboom et al., 2020; Rodgers, 2010), and
provides additional opportunities to learn both about the model and the natu-
ral phenomena (McElreath, 2020, pp. 525–552). In cognitive psychology, such
models are sometimes referred to as cognitive process models, as they describe
the cognitive processes that underlie the data, and possess parameters that often
have clear interpretations (Forstmann & Wagenmakers, 2015).

2.1.2 Outline

In this article, we propose a model that explains fixation locations and fixation
durations simultaneously, and is 1) generative (i.e., can make predictions about
the locations of fixations at a particular time), 2) statistical (i.e., has a proper
likelihood function), 3) modifiable (i.e., can be expanded to include different
factors, including random factors), and 4) can be interpreted as a cognitive pro-
cess model.

The structure of this article is as follows. In the next section, we introduce
the model in conceptual terms, i.e., describe the architecture of the model to
highlight the core assumptions which yield the model interpretable as a cogni-
tive process model, while abstracting from particular analytic choices. Then,
we show how to derive a particular realisation of the model. This will involve
laying out concretely what analytic choices we made to make the model tractable.
We lay out several factors that can optionally be included in the model, and ap-
ply different versions of the model to real data to answer substantive questions,
thereby illustrating the model flexibility and usefulness. In the following sec-
tions, we limit ourselves mostly to the domain of free scene viewing. We be-
lieve that the proposed model could be extended or adapted further to other
contexts or paradigms, but that is not the focus of the current article.

We will refer to the new model as WALD-EM, standing for “Wald accumu-
lation of locations and durations of eye movements”. Reasons for this name
will become apparent in the following description of the model.
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2.2 Conceptual WALD-EM model
Our model describes eye movement data as x and y coordinates and durations
of fixations, and aims to provide answers to the questions about when and
where simultaneously. As such, it consists of two parts: One that corresponds
to the question when, and one that corresponds to the question where. These
two parts are then intertwined together to capture potential dependencies be-
tween these two.

2.2.1 Model for when

A typical human (adult) in typical situations makes on average one saccade
in 200-400 msec. The distribution of fixation durations is characteristically
positively skewed with typically positive relationship between the mean and
a variance, much like typical distributions of response times in decision tasks
(Palmer, Horowitz, Torralba, & Wolfe, 2011). Hence, it is reasonable to bor-
row from the response time modelling literature, i.e., evidence accumulation
models, such as LATER (R. H. S. Carpenter & Williams, 1995), Linear Bal-
listic Accumulation (S. D. Brown & Heathcote, 2008), or Diffusion Decision
(Ratcliff & McKoon, 2008).

In our model, we represent the fixation duration as the time it takes the ob-
server to make a decision to make a saccade. The decision process represents
information uptake from a current location up to a point where the currently
fixated location does not bring additional information compared to potential
information sources at other locations. We assume that information uptake is
a continuous-time stochastic process that rises to a threshold with some drift
and noise level. The time to make the decision to make a saccade is the first
passage time of this process. The simplest model for such a time is the Wald
distribution with three parameters: drift (ν), decision boundary (α), and stan-
dard deviation of the noise (σ), one of which needs to be fixed for identifiability
purposes (Chhikara & Folks, 1988). Apart from that the Wald distribution is
a reasonable candidate as it reflects the noisy evidence accumulation process (a
process that has been deemed as a neurally plausible mechanism for decision
processes, Anders, Alario, & van Maanen, 2016), it has previously also been
shown to fit fixation durations well (Palmer et al., 2011). Figure 2.1 shows the
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mechanism that gives rise to the Wald distribution.
Other models contain similar data generating processes for fixation dura-

tions. For example, the LATEST model (Tatler et al., 2017) assumes that the
fixation duration is also the time to make a decision to make a saccade to a new
location. Our model assumes stochastic random walk accumulation, whereas
LATEST assumes a linear ballistic process. Further our model assumes only
one decision process at a time, whereas LATEST assumes many accumulators
running in parallel. CRISP (Nuthmann et al., 2010) and ICAT (Trukenbrod
& Engbert, 2014) models also rely on a stochastic random walk underlying the
fixation durations. In CRISP and ICAT, however, decisions to make a saccade
can be cancelled by additional processes, whereas our proposal is simpler in that
passing the threshold immediately triggers a saccade. Further, in ICAT and
CRISP, the stochastic rise to threshold is thought of as an autonomous timer,
suggesting an inherent (but stochastic) rhythmicallity to saccades, whereas our
accumulator depends not only on internal characteristics of the observer, but
their surroundings as well.

2.2.2 Model for where
After the observer concludes that there is an advantage to move to another lo-
cation, it is time to make a saccade.

Each location of the stimulus provides some amount of attraction to the
observer. We call a function that maps the stimulus coordinates to that attrac-
tion an intensity function and denote it as: λ : R2 → R+, and will write it as
λ(x, y|s), where s stands for the current fixation. The total amount of inten-
sity of the whole stimulus is the integral (sum) of all the points of the stimulus:
Λ =

∫ ∫
λ(x, y|s) dxdy. In essence, we assume that when observers decide

where to go next, they pick a random location from a distribution proportional
to this function. The function may or may not depend on the current or pre-
vious fixations, depending on whether we assume a homogeneous (static over
time) or heterogeneous (evolving over time) process, and can be adjusted de-
pending on the researcher’s questions and desires.

In general, we will represent the intensity function as a combination of dif-
ferent factors that influence the intensity of different locations. These factors
may represent different features and can be combined in different ways (see
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Figure 2.1: Illustration of the process that results in a Wald distribution. Evi-
dence starts at 0 and accumulates as a Wiener process with a drift ν (displayed as
arrow) until it reaches a threshold α. The process is inherently noisy as shown
by 500 different traces generated with the same parameters (grey lines). The
first passage time (the time it takes to trespass the threshold α for the first time)
results in a Wald distribution (displayed on top).
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Barthelmé, Trukenbrod, Engbert, & Wichmann, 2013). For example, we can
build the intensity function such that it combines bottom up features of the
stimulus (e.g., saliency) with systematic tendencies (e.g., central bias or hori-
zontal bias), and so forth. Some of the factors can be thought of as representing
information provided by the stimulus, assuming that locations that are rich in
the information they provide will be attractive to fixate — and so will have a
high intensity. However, people not always fixate on locations with a lot of in-
formation. Later, it will be important to make a distinction between two types
of factors that combine in the intensity. The first group of factors will encom-
pass those that in some sense represent, or encode, information provided by the
stimulus, such as objects, shapes, colors, edges, faces, etc.2 We will denote the
combination of these factors as λ1(x, y|s) and the integral

Λ1 =

∫ ∫
λ1(x, y|s) dxdy (2.1)

will represent the total amount of information provided by the stimulus. The
second group comprises of factors that do not represent information of the
stimulus but influence the attractiveness of the potential locations by another
way, for example heightening the intensity near the center of the stimulus would
represent a central bias.

2.2.3 Combining models for when and where

The crucial part of the WALD-EM is how it relates the model for when and the
model for where to each other. Recall that we conceptualize fixation duration as
a period of evidence accumulation from a stimulus, and that information that
provides this evidence is a part of the intensity maps. However, not all infor-
mation is accessible at any single fixation (which is why we make saccades in the
first place). Indeed, human vision is limited by the fact that only at the fovea,
the place of the retina where the light falls from roughly around the center of
gaze, great detail is available. This provides a key insight that the fixation dura-
tions should be dependent on how much information there is available at the

2We use the term information for a lack of a better word, and do not use it in a strict sense
associated with the work of Shannon (1948).
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particular location the observer currently fixates. The physiological aspects of
foveal, parafoveal and extrafoveal vision are out of the scope of this article, but
similarly to other attempts for modeling of eye movements (Schwetlick et al.,
2020; Schütt et al., 2017; Trukenbrod & Engbert, 2014), we represent the fact
that vision is sharpest inside the fovea by implementing a so called “attentional
window”. This window suppresses intensity of locations relatively farther from
the center of gaze, and effectively limits the total information that is accessible
to the observer given the current fixation location.

In essence, we define an attentional window as a function a : R2 →
R ∈ [0, 1] and denote it as a(x, y|s), where s stands for the x and y coordi-
nates of the current fixation. The value of a corresponds to the proportion of
the intensity of locations at (x, y) given the current fixation location s. To get
a representation of the actual intensity of different locations, given a particular
fixation location s, we can multiply the intensity function by this attentional
window:

ω(x, y|s) = a(x, y|s)× λ(x, y|s), (2.2)

and the total amount of accessible intensity during a particular fixation s isΩ =∫ ∫
ω(x, y|s)dxdy; the total amount of information accessible to the observer

at a particular location will be denoted as

Ω1 =

∫ ∫
ω1(x, y|s) dxdy =

∫ ∫
a(x, y|s)× λ1(x, y|s) dxdy. (2.3)

Figure 2.2 illustrates this concept with examples in one dimension.
The concept of attentional window is important in our model as it provides

a link between the model for when and model for where to enable dependen-
cies between the two. Specifically, we make the model of when depend on the
model of where, and the attention window specifies how does that happen. In
the following, we make this link explicit. In the model for when, the time it
takes the observer to make a decision (to make a saccade) can be modelled as a
Wald distribution with parameters drift ν and decision boundaryα. However,
it is likely that fixation durations vary depending on the surroundings of the
current fixation location (Einhäuser, Atzert, & Nuthmann, 2020; Nuthmann,
2017; Nuthmann et al., 2010).

To link the model for when and where, we also make a distinction between
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Figure 2.2: The left panel shows an example intensity function λ(x) as a func-
tion of location along the x-coordinate. The middle panel shows the attention
window given that the current fixation is at sx = 55 (top) or sx = 20 (bot-
tom). The right panel shows the intensity accessible through the attention win-
dow.

factors that do and do not represent information provided by the stimulus,
as we assume that only information has a potential to influence the fixation
duration (e.g., fixating on a location particularly rich on detail will take longer
on average than on a location with only a uniform background) and not other
factors that do not provide information (e.g., central bias can attract people to
make a saccade towards the center of the screen, but there is no immediately
plausible mechanism for having longer fixation durations in the center of the
screen compared to the edges just because it is in the center). Generally, the
dependency of the fixation durations on fixation locations can be created in
two ways, and the two approaches are discussed here.

In the first approach, we can assume that upon arriving to a location s, the
observer harvests information from around that location with a drift rate ν,
and once the information available from that location is depleted, the decision
to Go is activated. In this framework, the total amount of information available
through the attention window Ω1 would replace the decision boundary α in
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the Wald model.
In the second approach, we can adopt the idea from LATEST (Tatler et al.,

2017) that the decision to make a saccade is based on continual comparison of
two hypotheses (Stay vs Go), where the “evidence” is based on the information
provided if one or another decision is adopted. The evidence supporting the
decision to stay is the total amount of information accessible through the at-
tention window (Ω1), whereas the evidence supporting the decision to Go is
the total amount of information provided by the stimulus (Λ1). In this frame-
work, the drift rate of the Wald model equals the log of the ratio of the two
evidences:

ν = ln

(
Go

Stay

)
= ln

(
Λ1

Ω1

)
, (2.4)

and the evidence accumulation continues until the decision threshold α is
reached. The second approach is consistent with the increasing evidence that
fixation durations are depending on a competition between the current and
potential future fixation locations (Einhäuser et al., 2020). Crucially, both ap-
proaches share two main predictions: 1) increasing the width of the attention
window increases the amount of information accessible through a single fixa-
tion, which has the effect of prolonging (on average) fixation durations, and 2)
fixations in areas with a lot of information will have (on average) longer dura-
tions than fixations in areas with low information.

2.3 Concrete WALD-EM model
In the previous section, we described the model in conceptual terms. However,
in order to implement the model, there are several choices to be made about
how to model the contribution of different factors, including their functional
forms. Some of these choices will be purely pragmatic and statistical rather than
theoretical, and are mostly motivated by the requirement to have a computa-
tionally tractable and modifiable model.

The model can be difficult to implement due to the two-dimensional inte-
grals that are used to obtain the values ofΛ1 (total information on the stimulus)
and Ω1 (total information available through the attention window). The ana-
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lytic tractability of these integrals relies on the functional form of the functions
λ(x, y) and a(x, y), and consequently ω(x, y). This obstacle can be solved in
two ways. However, these two approaches are not necessarily exclusive — later
we apply a model combining both approaches. The two approaches we present
here are not the only possible solutions, but are perhaps the most straight-
forward. Examples of other possible approaches are discussed in Gelman and
Meng (1998), X.-S. Wang and Wong (2007), and Azevedo-Filho and Shachter
(1994).

First, it is possible to divide the stimulus into a grid of discrete locations,
leading to an approximation of the continuous space, which leads to tractabil-
ity regardless of the functional forms (i.e., integrals become sums) at the ex-
pense of loosing precision due to the discrete approximation. The degree of
precision is arbitrary as it can be increased or decreased by changing the size of
the cells in the grid, but could quickly lead to a computational bottleneck for
fine grained approximations due to the explosion of the number of terms to be
summed.

Second, the construction of the functions at play can be carefully selected
such that the integrals are analytically tractable. This avoids the need to specify
the arbitrary precision of the discrete approach, and potentially leads to less
computational burden. However, it may limit the flexibility of the model, as
analytic solutions are possible only for a limited number of functional forms.

2.3.1 Modeling λ

The model for the function λ that converts the coordinates of the stimulus
to intensity can be achieved in different ways. We generally desire to include
different factors in the model, for example central and directional biases, infor-
mation about locations of objects on the scene, etc. This can be achieved by
following (Barthelmé et al., 2013):

λ(x, y) = Φ
(∑

βkfk(x, y)
)
, (2.5)

where βk is a weight of a factor k, fk is a function that maps factor k to the
locations (x, y), and Φ is analogous to a link function in GLMs. Particularly
suitable candidates for this function are Φ(x) = exp(x), Φ(x) = x, Φ(x) =
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ln(exp(x) + 1) or their combinations (see Barthelmé et al., 2013, for the dis-
cussion of the differences between them).

In our application, we useΦ to be an identity function, which by using ap-
propriate restrictions (specified below Equation 2.6) results in a mixture model:

λ(x, y) =
∑

πkfk(x, y), (2.6)

whereπk ∈ [0, 1] and
∑

πk = 1, fk(x, y) ≥ 0∀x, y, and
∫ ∫

fk(x, y)dxdy =

1, making the λ(x, y) a proper probability density over a plane. The value of
πk then correspond to the relative importance of a factor k, and fk(x, y) corre-
sponds to a distribution of x and y locations under that factor. By definition,
the value of Λ = 1 (total intensity of stimulus) for whatever setting of the pa-
rameters. A particularly attractive property of such definition is the fact that
the separation between the factors that represent information on the stimulus
from the factors that do not is straightforward. For example, if the first and
second factors (k = 1 and k = 2) encode objects on the screen and saliency
(which can plausibly play a role in fixation durations), whereas the third factor
(k = 3) encodes a central bias (which arguably does not influence fixation dura-
tions) then we can simply drop the third factor from the calculations used in the
model for fixation durations, and define λ1(x, y) = π1f1(x, y) + π2f2(x, y),
and Λ1 = π1 + π2.

Conceptually, a canonical interpretation of such formulation is that the
mixture represents a generative model where the observer chooses the next fix-
ation by first randomly selecting a factor k with probability πk and then selects
the location by randomly drawing from the density of the chosen factor fk
(Barthelmé et al., 2013). It is questionable whether this assumption is the most
realistic — for example, takingΦ = exp(x) (a log-additive model) corresponds
to observers combining all factors into one meshed weighted map which deter-
mines the next fixation, an approach taken by Barthelmé et al. (2013) — the
difference being that whereas the mixture model formulation allows to iden-
tify (with some probability) which particular factor was responsible for emit-
ting a particular fixation, it is not the case for other models where all factors
cause all fixations at the same time, but some have more influence than others.
We believe that which approach is more realistic can be addressed by empirical
comparison of different models that differ in these kinds of assumptions.
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2.3.2 Calculating Ω

The crucial step is to determine the value of Ω (or Ω1) — the total intensity
available after filtering through the attention window a(x, y|s). Recall that:

Ω =

∫ ∫
ω(x, y)dxdy =

∫ ∫
a(x, y)λ(x, y)dxdy. (2.7)

Given the specification of λ introduced in Equation 2.6, we can rewrite it
as:

Ω =

∫ ∫
a(x, y)

∑
πkfk(x, y)dxdy =

∑
πk

∫ ∫
a(x, y)fk(x, y)dxdy,

(2.8)
from which it is clearly visible that choice of the functional form of the atten-
tion windowa(x, y) and the individual factorsfk(x, y)determine whether the
model will be tractable without approximation through discretization. One of
the possibilities to satisfy this is to model each fk(x, y) as a bivariate normal
distribution, and a(x, y) as a kernel of a bivariate normal distribution. Fur-
ther, we will assume that the dimensions are uncorrelated, thus fk(x, y) =

fk(x)fk(y) and a(x, y) = a(x)a(y), where fk(.) is a Normal distribution
with parametersµk andσk for the appropriate dimensions, and a(.) is similarly
the gaussian kernel with center at the current fixation (s) and scale parameter
σa in the appropriate dimension. This allows us to rewrite the double integral
in Equation 2.8 into a product of two integrals:

Ω =
∑

πk

∫
a(x)fk(x)dx

∫
a(y)fk(y)dy, (2.9)
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which has a simple analytic solution:∫
a(x)fk(x)dx =

=

∫
1√
2πσ2
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exp
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]
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(2.10)
and equivalently in the y dimension.

Finally, we use the parametrization where the drift rate ν varies with the
location of the fixation (Section 2.2.3). Combining the previous two equations,
we can write the drift rate as follows:

ν|s, σa, λ = ln(Λ1)− ln(Ω1)

= ln
K∑
k=1

πk − ln
K∑
k=1

exp

[
lnπk+

2∑
i=1

(
lnσai −

ln(σ2
ai + σ2

ki)

2
− (µki − si)

2

2(σ2
ai + σ2

ki)

)]
,

(2.11)
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where the iteration over i only makes explicit the integration over x and y di-
mensions. The above expression was purposely written in the log-sum-exp-
log form explicitly to bring it in line with its computational implementation
(which is more stable in this form). In case not all factors provide information,
the only change in Equation 2.11 would be the term K in the first summation
(e.g., if the first two factors belong to λ1 but not the third, K = 3 would be
replaced with K = 2).

2.3.3 Likelihood

Assuming data in the form of d ∈ RT
+ as the durations and s = (sx, sy) ∈

RT×2 as the x and y coordinates of T observed fixations, the likelihood of the
model can be written as:

L(θ|d, s) =
T∏
t=1

λ(t)(s(t)x , s(t)y |π, µ, σ)× fW (d(t)|ν(t), α), (2.12)

where the superscript for λ means that the intensity function might change
during the course of time (which we show later), and ν(t) changes depending
on the current location through Equation 2.11. fW stands for the p.d.f. of the
Wald distribution.

In general, assuming K factors included in the model, the model can have
K parameters π1, . . . , πK , 2 × K parameters µ1, . . . , µK (each a vector of 2
for x and y direction), 2×K parameters σ1, . . . , σK (each a vector of 2 for the
x and y directions), 2 parameters for σa (the width of the attention window in
thex and y directions), and the decision boundaryα, totalling 5K+3−1 free
parameters. Depending on the actual factors included in the model, we will be
able to fix or equate some parameters to reduce the number of parameters to
be estimated, although it is not necessary to do so.

2.3.4 Including saliency

An important branch of models that describe and predict distributions of fixa-
tion locations are saliency models. In our model, saliency can play a role as one
of the factors determining the eye movement behavior. We define a saliency
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model (Itti & Koch, 2000; Itti, Koch, & Niebur, 1998) as an algorithm that
takes the image (stimulus) as an input, and which produces an output, usu-
ally by assigning each pixel a value representing the local saliency of that pixel.
Common features that these models consider important are local-global con-
trasts in color, intensity, and edges.

Saliency models enjoy a lot of success in predicting eye movement behavior
and thus it seems reasonable to include some form of a saliency map as one
of the factors in our model. Unfortunately, given the nature of the output of
saliency models, it is not possible to implement the model fully analytically,
and we will instead use discretization. To further reduce the computational
complexity, we will reduce the resolution of the output of a saliency map.

Let’s define a saliency map asSal, where each of its element assigns a saliency
to a pixel (in this context, pixels can be resized to contain multiple physical pix-
els of the display). Having I pixels in one dimension and J pixels in the other
dimension, we have a total number of P = I × J pixels. We standardize the
output of a saliency algorithm to ensure that

∑P
p=1 salp = 1.

To include saliency into the model for where, we obtain a representation of
the saliency on a continuous space of the x and y coordinates by defining the
intensity function of saliency as a two dimensional step function:

f(x, y) =
salp(x,y)
h× w

, (2.13)

where p(x, y) returns the index of a pixel which is a super set of the position x

and y, and where h and w is the height and width of the pixel. Standardization
by the area of the pixel ensures that after converting the saliency map Sal to
the intensity function, the volume

∫ ∫
f(x, y) dxdy amounts to 1.

To include saliency into the model for when, we need to adopt additional
simplifications as to evaluate the integral

∫ ∫
a(x, y)× f(x, y) dxdy. We de-

fine xp and yp as the x and y coordinates of the center of a pixel p, respectively,
and approximate f(x, y) as:

f(x, y) ≈
P∑

p=1

salpNormal(x|xp, κ)Normal(y|yp, κ), (2.14)

which leads to (using results in Equation 2.8):
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∫ ∫
a(x, y)f(x, y) dxdy ≈

P∑
p=1

salp
σ2
a

σ2
a + κ

exp

(
−(xp − sx)

2 + (yp − sy)
2

2(σ2
a + κ)

)
,

(2.15)

which we can further simplify by letting κ → 0:

∫ ∫
a(x, y)f(x, y) ≈

P∑
p=1

salp exp

(
−(xp − sx)

2 + (yp − sy)
2

2σ2
a

)
.

(2.16)
These steps enable us to approximately compute the drift rate by substitut-

ing the discrete saliency map with a continuous function.
However, this implementation still requires serious computational resources:

for example, fitting a model that includes a saliency map of resolution of 800×
600 pixels would mean summing up P = 800 × 600 = 480, 000 terms for
every fixation in every iteration of the fitting procedure.

There are generally 3 ways to alleviate the problem of the computational
complexity. First, it is possible not to include the discrete factor in the model
for when, but only include it into the factor for where. However, leaving it out
does not solve the problem, but rather avoids it altogether. Second, it is possi-
ble to downsample the output of the saliency map. Indeed, many saliency algo-
rithms already output the saliency map that has a resolution smaller than the
original image (e.g., by a factor of 16 in each of the dimensions, Itti et al., 1998).
Having an input image of dimensions of 800 × 600 pixels then leads to quite
substantial reduction: Instead of summing up 480,000 terms we need to sum
up only about 2,000. Downsampling the saliency maps to have smaller resolu-
tion than the input image is also desirable from a measurement perspective as
the eye-tracking devices likely have measurement error that translate to several
pixels of the input image. Downsampled saliency maps then correspond better
to the level of precision of the data. Third, it is possible to limit the summa-
tion only for the terms that lie in a relative proximity from the current fixation.
For example, the attention window lets through only at most 1.1% of the total
weights of the pixels that lie at a distance of 3σa or more, essentially meaning
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that many of the terms in the sum are basically zero. Leaving out the pixels that
are that far from the current fixation can reduce the number of terms to be
summed by a great amount while not sacrificing much of the computational
accuracy. Downsampling and limiting the summations are not mutually exclu-
sive and can be used at the same time — an approach we take in the practical
implementation of our model.

2.4 Application: Infant scene viewing
Here, we apply a particular realization of the model to data by van Renswoude,
Voorvaart, van den Berg, Raijmakers, and Visser (in prep) to demonstrate its
use in applied context. This data set was originally collected with the aim to
investigate the role of bottom up versus top down factors in infants’ eye move-
ments. Specifically, the data set was collected to assess whether object famil-
iarity is associated with specific patterns in eye movement behavior of infants
when looking at pictures of real world scenes. In the following application, we
are interested in the extent to which four different factors influence the distri-
bution of fixation locations and the timing of saccades.

The four factors that we considered are the 1) locations (and sizes) of objects
on the scene (van Renswoude et al., in prep; J. Xu et al., 2014), 2) saliency (Itti
& Koch, 2000, 2001; Itti et al., 1998), 3) exploitation (i.e., tendency to make
repeated fixations in a relative proximity to a previous fixation; Malem-Shinitski
et al., 2020), and 4) central bias (van Renswoude et al., 2019).

The model was fitted on half of the data set (with the other half used for
a following cross-validation). To accommodate individual differences between
participants, we generalized the model using hierarchical modeling (the details
are explained below). As such, we obtain assessment of the individual differ-
ences between the participants in terms of their tendency to dwell longer on
current locations (captured by the decision boundary), and the width of their
attention window.

2.4.1 Data Descriptives
The data contains recordings of 47 participants looking at 29 static pictures se-
lected from the pool of 700 images created by J. Xu et al. (2014). 39 participants
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looked at all 29 stimuli (min = 5, mean = 27.6, median = 29, max = 29 viewed
images per participant). The mean number of fixations per trial was 11.4 (sd =
4.3); the total number of fixations in the data set is 14,807.

We split the data set in two parts, one of which we used to estimate the
parameters of a model (number of fixations = 7,207), and one of which we
used to validate the predictions of the model. We counter balanced the num-
ber of trials per participant in the two sets to ensure that both data sets con-
tain some data from all participants and all items. The details of the proce-
dure are available at github.com/Kucharssim/WALD-EM/blob/master/
scripts/prepare_data.md.

The exact form of splitting the data in this way had the following reasons.
First, the aim of this article is not to generalize findings, but rather as a concep-
tual proof of concept — that the model is applicable to eye tracking data and
captures some interesting patterns in the data. Second, being able to gener-
alize to a population is contingent on additional requirements besides cross-
validation procedure, such that the participants and stimuli were randomly
selected from the target population. We did not define which population of
infants we would like to generalize to, and don’t assess whether they indeed
represent that population. Further, we know for certain that the 29 stimuli are
not randomly selected from the pool of 700 images by J. Xu et al. (2014), mak-
ing it difficult to generalize even to this pool, and even more problematic to
some more general population of static images. Lastly, in terms of our goals,
our procedure is more robust against differences between the train and test sets
caused by randomly splitting small sets of data. Usually, for smaller data sets,
procedures such as k-fold cross validation (or leave-one-out) is usually done for
this purpose, compared to split half cross validation. However, k-fold cross val-
idation was not an option due to the computational demands of the model.
Thus, by giving up aspirations for generalizing our findings, our splitting pro-
cedure ensured that we could still perform cross-validation, but ensuring that
potential problems of cross validation are not caused by randomly choosing an
“outlying” participant or stimulus into the train or test sets.

https://github.com/Kucharssim/WALD-EM/blob/master/scripts/prepare_data.md
https://github.com/Kucharssim/WALD-EM/blob/master/scripts/prepare_data.md
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2.4.2 Initial Model

The model contains four factors that determine the fixation locations, two of
which are included in the model for fixation duration.

The model for where is composed of four factors, and so we can describe
the distribution of fixation locations as follows:

(x, y) ∼
4∑

k=1

πkfk(x, y|θk), (2.17)

whereπk are the weights of different factors andfk is the distribution of a factor
k with parameters θk.

The first factor is the location and sizes of objects on the scene. We assume
that each object on the scene can have different level of attractivity and that
larger objects distribute their total attractivity over larger area. This idea can be
expressed by another mixture:

f1(x, y|θ1) =
∑
j

ωjNormal(x|centerxj, γ × widthj)×

Normal(y|centeryj, γ × heightj),
(2.18)

whereωj are the individual attractivities of different objects on a particular im-
age. Parameter γ is a scaling factor that stretches or compresses the attractivity
of objects proportionally to their sizes.

The second factor is the saliency, which we treated as described in Equa-
tion 2.13.

The third factor can be described as an exploitation factor, and captures the
phenomenon that people tend to linger close to the current fixation location:
we model it as a bi variate normal distribution centered at the fixation location
at time t to predict the fixation location at time t+ 1:

f3(x, y|θ3) = Normal(x|stx, σe)Normal(y|sty, σe) (2.19)

The fourth factor represents the central bias, and is modelled as a bi variate
normal distribution centered at the center of the screen (xc = 400, yc = 300)
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f4(x, y|θ4) = Normal(x|400, σd)Normal(y|300, σd) (2.20)

For the fixation durations, we only consider the first two factors influential:
the latter two factors do not stand for information presented on the screen, but
rather spatial biases, and therefore should not have any influence on saccade
timing.

The model for fixation duration can be summarised as following:

d ∼ Wald(ν, α)

ν = ln(π1 + π2)−

ln

(∫ ∫
a(x, y|σa) (π1f1(x, y|θ1) + π2f2(x, y|θ2)) dxdy

)
.

We also modelled the individual differences between participants by mod-
elling their decision boundary and width of the attention window as random
terms. Because both of these parameters need to be positive, we modelled them
on the log scale:

ln(αi) = µα + zi ∗ σα

zi ∼ Normal(0, 1),

where αi stands for the decision boundary of participant i, and µα with σα are
the estimated group mean and standard deviation of the parameter α on the
log scale. The same approach was taken for the attention window σa.

We used weakly informative priors on the parameters that were based on
prior predictive simulations done when building the model (Schad, Betancourt,
& Vasishth, 2019). The priors are accesible at the model file: git.io/JfjuJ.

We implemented the model using the probabilistic programming language
Stan (B. Carpenter et al., 2017) interfacing with R (R Core Team, 2020) us-
ing the package rstan (Guo, Gabry, & Goodrich, 2020). The following ad-
ditional R packages were used to produce the output (in no particular order):

https://git.io/JfjuJ
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OpenImageR (Mouselimis, 2019), Rcpp (Eddelbuettel et al., 2020; Eddelbuet-
tel & François, 2011), ggforce (Pedersen, 2019a), gtools (Warnes, Bolker, &
Lumley, 2020), here (Müller, 2017), imager (Barthelme, 2020), knitr (Xie,
2014, 2020), patchwork (Pedersen, 2019b), plotrix (Lemon, 2006; Lemon
et al., 2019),pracma (Borchers, 2019),tidybayes (Kay, 2020), andtidyverse
(Wickham, 2019). Throughout the development of the model, we conducted
simulation studies to validate our implementation. The results are documented
in the following folder of our project repository github.com/Kucharssim/
WALD-EM/tree/master/documents. The current (small) simulation results
are encouraging in terms of parameter recovery, but we did not invest our re-
sources into a full validation study due to the computational demands of the
model.

2.4.3 Results — Initial Model
We ran 10 MCMC chains with random starting values and default tuning pa-
rameters set by Stan. Each chain ran for 1,000 warm up and 1,000 sampling
iterations, resulting in a total of 10,000 samples used for inference. The model
ran without any divergent transitions. We examined the potential scale reduc-
tion factor R̂, trace plots, auto correlations, and the number of effective samples
to identify potential problems with convergence. We did not find indications
of poor convergence, and thus proceed with interpreting the model.

Posterior predictive checks. We generated posterior predictives for the data
set used for estimating the parameters, and for the hold out data set, to assess
whether the fitted model reproduces the observed patterns in the data, and
whether the patterns that the model picks up from the data carry over to the
hold out data set. This enables us to contrast features that are desirable to be
captured by the model (i.e., patterns that are present both in the fitting and
hold out data set), from features that are not so desirable to be captured by the
model (i.e., patterns that are present in fitting but not hold out data set).

The model is able to capture the characteristic distribution of the fixation
durations, as documented in Figure 2.3, although the model predicts a slightly
fatter right tail than that of the data. We also inspected the model’s predictions
of the fixation durations for individual participants, to assess whether it cap-
tures their individual differences. Figure 2.4 shows that the model is well able

https://github.com/Kucharssim/WALD-EM/tree/master/documents
https://github.com/Kucharssim/WALD-EM/tree/master/documents
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Figure 2.3: Predicted (red) versus observed (green) distribution of the fixation
durations; predictions using the initial model. Left panel shows histogram of
the empirical data versus the density estimate using gaussian kernel of the pos-
terior predictives. Right panel shows empirical cumulative distribution func-
tions. Top panel shows the data used for fitting the model, bottom panel the
hold out data used for cross-validation.
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Figure 2.4: Posterior predictive checks for the individual differences in fixa-
tion durations. Left panel shows the observed (x-axis) and predicted (y-axis)
mean fixation durations for each participant separately. Right panel shows the
observed (red) versus predicted (blue) mean fixation durations, 20% and 80%
quantiles (whiskers). The top panel shows the results in training set, bottom
panel shows the results in the test set.

to capture individual differences between participants in respect to their fixa-
tion durations.

The model also reproduces the distributions of fixation locations. Figure 2.5
shows an example for one particular stimulus (image number 251 from J. Xu
et al., 2014). The top-right in Figure 2.5 displays the four factors included in the
model, which combine proportionally to their weights to the posterior predic-
tive distribution (labeled as predicted fixations).

Next to the variables used to fit the data (fixation durations and fixation lo-
cations), we also checked on other quantities implied by the model. Specifically,
we checked whether we can reproduce the distribution of saccade amplitudes
and the distribution of saccade angles (as these derivative measures provide ad-
ditional insights into the model performance, e.g., J. M. Henderson & Hayes,
2018). Saccade amplitude was measured as the Euclidean distance between two
successive fixations in units of pixels. Saccade angle was calculated as an angle in
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Figure 2.5: Example of the model for fixation locations on the stimulus created
by J. Xu et al. (2014) (top left panel). The four factors influencing the fixation
locations are depicted in the top right quadrant. The bottom left panel shows
the observed fixation locations, and the bottom right the draws from the pos-
terior predictive distribution of the fitted model.
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radians between the horizontal axis of the screen and the vector that connects
two successive fixations.

Figure 2.6 shows the observed versus predicted distributions of saccade am-
plitudes on one example stimulus (shown in Figure 2.5). The model usually
captures the distribution of saccade amplitudes relatively well, exhibiting two
modes. Figure 2.6 shows the observed versus predicted distributions of saccade
amplitudes on the same stimulus. The prediction of saccade angles is relatively
good, as the model picks up patterns of saccade directions specific to a specific
stimulus. As an illustration, Figure 2.7 shows that the model captures saccade
directions in the top-right and bottom-left directions on the stimulus shown
in Figure 2.5. However, overall the model does not capture well an excess of sac-
cades in the horizontal direction (see Figure 2.12), which could be an indication
that the model needs to be expanded with a factor that represents a horizontal
bias (van Renswoude et al., 2016).

Parameter estimates The results indicated that the most important factor
driving fixations was the locations of objects on the scene (weight = 0.37, 95%
CI[0.35, 0.40], followed by exploitation (weight = 0.30, 95% CI[0.28, 0.31]),
saliency (weight = 0.18, 95% CI[0.16, 0.20]), and central bias (weight = 0.16,
95% CI[0.14, 0.17]).

The parameter that controls sizes of objects as identified by J. Xu et al.
(2014) indicated that people fixate relatively close to the centroids of the ob-
jects (scale = 0.23, 95% CI[0.22, 0.24]). The exploitation region had a stan-
dard deviation σ = 34.58 (95% CI[33.15, 36.06]) pixels, whereas the central
bias region had a standard deviationσ = 93.84 (95%CI[88.65, 98.91]) pixels.
Relatively speaking, central bias is less focused than the exploitation factor.

2.4.4 Extended Model
The original model fared well capturing the distribution of fixation durations
and the overall distribution of fixation locations, and was able to a small degree
to capture an excess of horizontal saccades without this being explicitly built
into the model. However the discrepancy between the model’s predictions and
data show that the tendency to make horizontal saccades is particularly note-
worthy and possibly needs an extra explanation.

To explore whether we can improve the model’s capability to reproduce the
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Figure 2.6: Observed (blue) versus predicted (red) saccade amplitude on one
particular stimulus; predictions using the initial model. Top panel shows the
data used for fitting the model, bottom panel the hold out data used for cross-
validation.
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Figure 2.7: Observed (blue) versus predicted (red) saccade angle on one partic-
ular stimulus. Plot on the left shows the data used for fitting the model, plot
on the right shows the hold out data used for cross-validation.

amount of saccades in the horizontal direction, we extended the model. Specif-
ically, we added another factor into the model for fixation locations, represent-
ing the horizontal bias. To create a factor that represents a saccadic bias (such
as horizontal bias), instead of location preferences, it is possible to transform
fixation locations (x and y coordinates) into a saccade representation (angle θ
and amplitude r of a saccade):

θ = arctan
(
∆y

∆x

)
r =

√
∆x2 +∆y2,

(2.21)

where ∆x = xt − xt−1 and ∆y = yt − yt−1 represent a fixation as the
difference of the x and y coordinates compared to the previous fixations (we
set x0 = 400 and y0 = 300 as that is the middle of the screen).

That way, we can substitute a factor of locations with a factor of saccade
angles and amplitudes:

f(x, y) =
f(θ, r)

r
, (2.22)

where the denominator r is the Jacobian determinant representing the stretch-
ing of the space after the change of variables from cartesian to polar coordinates:
dxdy = rdrdθ.
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Figure 2.8: Example of the joint density of saccade angle and saccade amplitude
plotted on the screen dimensions. The density highlights saccades in the left
and right directions relative to the current fixation (in this figure, the center of
the screen), representing the horizontal bias.

To create the joint density of the angle and amplitude, we express it using
the chain rule of probability:

f(θ, r) = f(θ)× f(r|θ). (2.23)

The important part of this factor is the distribution of saccade angles, for
which we specify the following distribution:

f(θ) = 0.5vonMises(0, κ) + 0.5vonMises(π, κ), (2.24)

which specifies a mixture of von Mises distributions with centers fixed to 0
and π (i.e., right and left direction, respectively), and a concentration κ which
is estimated from the data. The mixture weights are fixed to 0.5 as we assume
that saccades in the left direction are equally attractive as saccades to the right
direction.

The conditional density f(r|θ) is chosen to be a uniform stretched over
the interval between 0 and the maximum saccade lenght that would not fall
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outside of the screen if it was launched from the position (xt−1, yt−1) under
the direction θ.

The generative mechanism for such a joint density is the following. First,
the observer draws a saccade angle from the distribution f(θ). Then, the ob-
server draws a point along a line under the sampled angle θ, that goes between
location (xt−1, yt−1) and the edge of the screen. This point is the new fixation
position.

Figure 2.8 shows and example of the function f(θ, r) on the screen coor-
dinates, with (xt−1, yt−1) set to the center to the screen, and κ = 15.

The rest of the model stayed the same.

2.4.5 Results — Extended Model
We fitted the extended model in the same way as the initial model: We ran 10
MCMC chains with random starting values and default tuning parameters set
by Stan. Each chain run for 1,000 warm up and 1,000 sampling iterations, re-
sulting in a total of 10,000 samples used for inference. The model ran without
any divergent transitions. We examined the convergence diagnostics, to find
that we could not identify potential problems with convergence. Thus, we pro-
ceed with interpreting the model.

Posterior predictive checks. We conducted posterior predictive checks the
same way as with the previous model: Comparing the predicted and observed
distribution of fixation durations, fixation locations, saccade amplitudes, and
saccade angles. The extended model performed similarly to the initial model
in terms of the first three variables (see Figures 2.9 and 2.11). As Figure 2.12
demonstrates, the extended model did better in terms of reproducing the over-
all distribution of saccade angles - being able to reproduce the excess of saccades
going in the horizontal direction better after we have explicitly added a factor
that represents horizontal bias. However, it is still visible that there is still some
potential to improve the model predictions.

Model comparison using cross-validation. To assess whether the extended
model did better at predicting the data compared to the initial model, we com-
puted the log-likelihood of the hold-out set under the two models, given the
posterior distributions of the parameters. This way, we obtained a distribu-
tions of the log-likelihood for the two models based on their out of sample per-
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Figure 2.9: Predicted (red) versus observed (green) distribution of the fixation
durations; predictions using the extended model. Left panel shows histogram
of the empirical data versus the density estimate using gaussian kernel of the
posterior predictives. Right panel shows empirical cumulative distribution
functions. Top panel shows the data used for fitting the model, bottom panel
the hold out data used for cross-validation.
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Figure 2.10: Posterior predictive checks for the individual differences in fixa-
tion durations. Left panel shows the observed (x-axis) and predicted (y-axis)
mean fixation durations for each participant separately. Right panel shows the
observed (red) versus predicted (blue) mean fixation durations, 20% and 80%
quantiles (whiskers). The top panel shows the results in training set, bottom
panel shows the results in the test set.
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Figure 2.11: Observed (blue) versus predicted (red) saccade amplitude on one
particular stimulus; predictions using the extended model. Top panel shows
the data used for fitting the model, bottom panel the hold out data used for
cross-validation.
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Figure 2.12: Predicted versus observed distribution of saccade angles under the
initial (left) and extended (right) model, over all stimuli in the data set; the top
panel displays the data set used to fit the model, bottom displays the hold out
data set.
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Quantiles

Factor Mean SD 2.5% 97.5%
Objects 0.36 0.01 0.34 0.39
Saliency 0.17 0.01 0.16 0.19

Exploitation 0.33 0.01 0.32 0.35
Central bias 0.13 0.01 0.11 0.15

Table 2.1: Descriptives of the posterior distribution of the factor weights under
the initial model.

formance which we use for cross-validating the models. To compare the two
distributions, we computed the distribution of the log-likelihood differences:
∆ logL = logL(Model 2) − logL(Model 1): Positive values mean that the
extended model predicted the hold-out data better than the initial model, and
negative values mean that the initial model predicted the hold-out data better
than the initial model.

The log-likelihood difference distribution (median=45.77, IQR [15.18,
77.06]) indicated that the extended model was better at predicting the hold-out
data than the intitial model: adding horizontal bias into the model increased
the model’s predictive success.

Parameter estimates. The estimates indicated that the most important fac-
tor were the objects on the scene (weight = 0.35, 95%CI[0.33, 0.37], followed
by exploitation (weight = 0.31, 95%CI[0.29, 0.32], saliency (weight = 0.14,
95%CI[0.13, 0.16], central bias (weight = 0.13, 95%CI[0.11, 0.15], and lastly
the horizontal bias (weight = 0.07, 95%CI[0.06, 0.8]).

The parameters that control the individual factors were very similar to those
of the initial model. The parameter that controls sizes of objects indicated
that people fixate relatively close to the centroids of the objects (scale = 0.23,
95%CI[0.22, 0.24]). The exploitation region had a scale (σ = 34.28, 95%CI
[32.80, 35.78]) of about a third of that of the central bias (σ = 98.68, 95%CI
[93.42, 103.99]). The additional parameter that controls the concentration of
the horizontal bias was estimated to κ = 18.36, 95%CI[13.4, 24.11].
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Quantiles

Factor Mean SD 2.5% 97.5%
Objects 0.35 0.01 0.33 0.37
Saliency 0.14 0.01 0.13 0.16

Exploitation 0.31 0.01 0.29 0.32
Central bias 0.13 0.01 0.11 0.15

Horizontal bias 0.07 0.01 0.06 0.08

Table 2.2: Descriptives of the posterior distribution of the factor weights under
the extended model.

2.5 Benefits of joint modeling of fixation loca-
tions and fixation durations

The application of the model presented in the article showed that the model is
able to fit a particular data set relatively well. The strength of our approach is
that it can model both fixation durations and fixation locations concomitantly.
This has two general benefits compared to models that consider fixation dura-
tions and fixation locations separately. In this section, we discuss these benefits
more explicitly.

First, having different sources of data gives us more information to estimate
parameters of interest. For example, one could fit some variant of a mixture
model to fixation locations to estimate the importance of various factors that
influence eye movements. However, in our model, the weights of these factors
not only play a role for the fixation locations, but come into play when calculat-
ing the drift rate of the Wald process, therefore they are informed by the fixation
durations as well. This benefits parsimony of our models as well as introduces
the potential to estimate parameters with greater precision, allowing to even
estimate parameters that would have been otherwise hardly identifiable.

Second, modeling fixation locations and durations together enables us to
capture some dependencies between the two. Potentially, this could lead to
modeling phenomena that occur in both spatial and temporal dimensions. In
the case of the current approach, the model has a built-in global dependency be-
tween locations and durations due to the way it represents their joint probabil-
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Figure 2.13: The mean of the posterior predictive for the fixation durations (x-
axis) vs the observed fixation durations (y-axis) for each participant separately.
The scatterplot suppresses outliers above 1 sec. Regression lines are superim-
posed to highlight the variablity between participants.

ity. Specifically, the distribution of fixation durations depends both on the indi-
vidual characteristics of the observer (by having two parameters vary between
participants), but also on the surroundings of the current fixation. The sur-
roundings of the observers’ fixation are taken into account when evaluating the
drift rate of the Wald process, where the intensity function is passed through
the attention window. The intensity function is concurrently the function that
(stochastically) determines fixation locations. Thus, the model makes the pre-
diction that fixations on locations that are more likely to be fixated than oth-
ers will (on average) be longer than locations that are relatively less likely to be
fixated. Conceptually, locations with a lot of information will have a lot of at-
traction, and lead to more fixations and longer durations.

To test that the model’s predictions are accurate in this respect, we derive
the following two hypotheses3 that follow from the model’s predictions. (1) The
model is able to predict individual fixation durations. Because the model al-

3N.B. these hypotheses were formulated post hoc, based on the feedback from an anony-
mous reviewer to whom we are thankful for this idea.
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ready explains individual differences in fixation durations, we will look into the
correlation between predicted and observed fixation duration for each partic-
ipant separately. A positive correlation within a participant suggests that the
model is able to pick up information around the fixation location to adjust its
prediction about the fixation duration. (2) Both in the data and in the model,
there exists a positive correlation between how often (or how likely) a particu-
lar area on the image is fixated, and a mean fixation duration in that area. To
test this hypothesis, we split images into a grid and calculate the correlations for
each image separately (there might be differences between images that we left
unmodelled). For both hypotheses we used the Bayesian inference scheme for
correlations developed by Ly et al. (2018). We present the results both for the
training set, the test set, and with the two sets combined. Here we show the
results from the extended model. The results from the initial model are nearly
identical.

Figures 2.13 and 2.14 show the results related to hypothesis (1) that the model’s
predictions positively correlate with the observed fixation durations. Figure 2.13
shows the scatterplot between the mean of the predictive distribution for each
fixation duration and the observed fixation durations, superimposed by the re-
gression line for each participant separately. Figure 2.14 shows the correspond-
ing Pearson’s correlation coefficients and their Bayes factors (testing null hy-
pothesis of no correlation versus alternative hypothesis of positive correlation).
We calculated the same for the train set (“In sample”), the test set (“Out of
sample”) and the two data set combined (“Combined”). Overall, most of the
correlations were positive, suggesting that the model is able to pick up some in-
formation about the surroundings of a fixation to inform the fixation duration.
However, the correlations were relatively low and some correlations remained
in the region where the Bayes factor does not strongly prefer either the null or
the alternative, suggesting that much of the variability of fixation durations is
yet to be explained by additional mechanisms.

Figures 2.15 and 2.16 show the results related to hypothesis (2) that there
is a relationship between fixation duration and fixation probability, i.e., that
locations that are more frequently visited are also fixated with longer durations.
To assess this hypothesis we first split each image into a grid of 50× 50 pixels,
leading to 16×12 cells in the grid in each image. For each cell, we calculated the
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Figure 2.14: The correlations between predicted mean fixation duration and
observed fixation duration for each participant separately and the log Bayes
factors testing the null model (no correlation) vs the alternative (positive cor-
relation, specified by stretched Beta(10,10) truncated at zero). The dotted lines
show the region of “anectdotal” evidence (Bayes factor between 1/3 and 3), i.e.,
that there is not enough information to say anything meaningful about pres-
ence or absence of the correlation.

probability of fixating inside of it using the model’s predictive distribution for
the fixation locations, and the predicted and observed mean fixation durations.
As before, we conducted this calculation for the train set, test set, and combined
data.

Figure 2.15 shows the scatterplot of the log probability of fixating a partic-
ular cell of the grid and the log mean fixation duration, with superimposed
regression line for each image separately. The top panel shows the relation that
was found in the data, the bottom panel shows the relation that is reproduced
by the model.

Figure 2.16 further shows the observed Pearson’s correlation and the corre-
sponding Bayes factors testing the null hypothesis of no correlation versus the
alternative hypothesis of positive correlation. For the majority of images (ex-
cept for three images that show correlations near zero), there appears to be a
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Figure 2.15: The correlations between the log of the predicted probability of
fixation and the log of the mean fixation duration of cells in the grid. Super-
imposed are the regression lines per each image separately. Regression lines are
superimposed to highlight the variability between items. The top panel shows
the relationship in the data, the bottom panel shows the relationship repro-
duced by the model.

positive relation between probability of fixating a particular location and the
mean fixation duration at that location. Arguably the relationship is stronger
in the model than in the data (see Figure 2.15). However, one needs to keep in
mind that the mean observed fixation durations are noisy because they are of-
ten calculated from only a couple of fixations inside a particular cell of the grid.
Whether this is a sufficient explanation or there is additional model misspecifi-
cation that causes this discrepancy is a potentially interesting avenue for future
research. Taken together, these results demonstrate that the model is able to
capture some global dependency of fixation durations on the attractivity of lo-
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Figure 2.16: The correlations between the log of the predicted probability of
fixation and the log of the mean fixation duration of cells in the grid, for each
image separately on the x-axis and the corresponding log Bayes factors testing
the null model (no correlation) vs the alternative (positive correlation, specified
by stretched Beta(10,10) truncated at zero). The dotted lines shows the region
of “anectdotal” evidence (Bayes factor between 1/3 and 3), i.e., that there is not
enough information to say anything meaningful about presence or absence of
the correlation.

cation of the image.

2.6 Conclusion & Discussion
This article presents arguments that theoretically grounded statistical models
are important for validating predictions of the emerging theoretical framework
against observed phenomena as well as detecting new empirical phenomena to
be explained by said theory. Our model is grounded in the theoretical assump-
tions that can be verbally summarised as follows: 1) fixation durations depend
on observers harvesting information from the stimulus, which is a noisy accu-
mulation process, 2) saccades are launched when the observer concludes that
staying at the current location is no longer advantageous over moving to an-



2.6. CONCLUSION & DISCUSSION 111

other location, 3) picking a new location depends on an internal “intensity”
map over the stimulus, which is a combination of different “factors”, such as
information on the screen or for example systematic tendencies that highlight
certain locations in contrast to others, and 4) observers harvest information
from the relative proximity of the center of gaze, subjected to the limitations of
their visual acuity — an assumption that provides the link between fixation du-
rations and fixation locations. We consider these the core theoretical assump-
tions of the model. From this listing of assumptions, it should be evident that
we are relatively more vague on the mechanism behind selection of the loca-
tion of the next saccade. This is because the model offers flexibility by making
use of “factors” that influence this selection, and because these “factors” on
their own can represent different theoretical viewpoints. For example, original
saliency models, such as that of Itti et al. (1998), can be considered a theory of
fixation selection of itself, as it describes the rise of saliency map as neurons fir-
ing according to surround-background differences in image intensity, contrast
of colors, and orientation of edges. We think this is a strength of our model as it
allows to “plug-in” different explanations of the data without having to heavily
modify the model.

In this article, we developed a model to analyse eye movement data by spec-
ifying a joint probability distribution of the fixation duration and fixation lo-
cations. To our knowledge, this is the first attempt to model fixation durations
and fixation locations by defining a joint likelihood function of these two ran-
dom variables. Using Bayesian inference, we were able to fit and extend the
model such that the predicted patterns of the fixation durations and fixation
locations align very closely with those of the observed data. Drawing upon the
strengths of specifying models using likelihood functions (Schütt et al., 2017),
we demonstrated how to diagnose, improve, and compare models so that they
capture phenomena of interest present in real data. An example application
showed that adding horizontal bias to the model improved the model’s ability
to capture the distribution of saccade angles.

The advantage of this approach is that it is possible for the model to be
fitted to data (given that it is a statistical model with a likelihood function) and
used to generate new data that can be contrasted with observed phenomena
(such as distribution of saccade angles). In case the model does not perform
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well in capturing these phenomena, it can be iteratively modified or improved
until the model does so, or is ultimately rejected. Further, the model provides
a relatively straightforward interpretation of the model parameters, facilitating
the inference and possibly theorizing about the underlying mechanisms.

In our application, the results suggested that the most important factors
determining eye movement behavior are the locations of objects on a scene,
immediately followed by the tendency to make repeated fixations in a location
nearby the current fixation. Salience and central bias had lower importance,
and horizontal bias the least, although all factors made a significant contribu-
tion to fitting the data.

With respect to the central and horizontal biases, there is an ongoing debate
on what is exactly the cause of these phenomena. Possible explanations range
from being caused entirely by the image content (e.g., objects mostly aligned in
the center of the images, or objects mostly aligned along horizontal axes or the
horizon), to being some sort of interaction between image content and system-
atic bias towards centers or horizontal saccades, to being completely explained
by systematic tendencies, caused by physiological, learned or strategic aspects
(Foulsham et al., 2018, 2013; Le Meur & Liu, 2015; Tatler & Vincent, 2008;
Tseng et al., 2009; van Renswoude et al., 2016, 2019). It is also possible that
these three sources of the observed “biases” are not mutually exclusive. The
model would be able to generate some central and horizontal bias with only
the objects and saliency factors, representing the first category. In our model,
we ended up using additional central bias and horizontal bias factors that were
modeled as completely independent of the image content, hence representing
the third category (independent of image content). Including these additional
factors improved the fit of the model above factors that encode the image con-
tent, lending some credit to the third type of explanations. However, apart
from the need of replicating this finding on other data sets, one needs to also
implement central and horizontal biases that explicitly interact with the im-
age content. Then, it will be possible to test all these explanations against each
other.

In this article, our focus was mainly on free scene viewing, and so was our
example. We hope and believe that the current model can be adapted to differ-
ent contexts as well, as is it so easily modified that it can include different factors
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or possibly various terms that accommodate various experimental designs or
research questions. For example, it should be possible to use the model to com-
pare demographic (e.g., adults versus infants) or experimental groups (e.g., free
viewing instructions versus visual search instructions), providing alternatives
to already established analytic methods (e.g., Coutrot, Hsiao, & Chan, 2018),
or even adopt the model to specific purposes – such as strategic influences on
eye movements in cognitive tasks (e.g., Kucharský et al., 2020) or economic
games (e.g., Polonio et al., 2015).

This article followed an unusual strategy in model comparison, and that
leads to some considerations regarding generalizability of our findings. The
strategy of splitting the data set in two parts allows us to assess the adequacy
of the models to describe patterns in the data that were not used for fitting the
model. Thus, cross-validation procedures (for e.g., model comparison) are pos-
sible. However, the splitting procedure ensured that for each trial, whether or
not included in the train or test sets, the model has some information about the
participant (from other trials done by that participant) and the stimulus (from
other participants on that stimulus) in that trial. Thus, the data in the test set
cannot be considered completely out of sample in the traditional sense, which is
one of the requirements for generalizability (next to additional assumptions).
The cross-validation still gives us information about over-fitting, but does not
aim for generalizing to a new population. This means that if we talk about
one model fitting better than another model, we mean it is better at capturing
patterns in the current sample of participants looking at the current sample of
stimuli.

2.6.1 Extensions and Future Directions
Although the final model fits relatively well, there are plenty of ways to make
it better in the future. For example, previous research suggested that the cen-
tral bias is slightly more stretched in the horizontal compared to the vertical
dimension (Clarke & Tatler, 2014; Tatler, 2007). In our application, we hold
the width of the central bias in two dimensions equal. This could have cre-
ated a slight misfit of the central bias factor, and could also underestimate the
model’s ability to produce saccade angles in the horizontal direction. Further,
we hold the widths of factors in the model constant wherever possible to make
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the simplest model we could apply do the data, and so this limitation can re-
late also to the exploitation factor and the attention window (both of which
we assume is spherical). We also modelled all factors as independent normal
distributions. In general, this assumption is not strictly necessary, and could be
relaxed by specifying the components as bivariate normal, i.e., estimating their
correlations. Luckily, these issues can be solved easily in case the data indicate
to do so.

Potential model misspecification could also arise from modeling the hor-
izontal bias. It has been shown that von Mises distribution is not necessarily
optimal for describing the distribution of the saccade angles, due to the fact
that the real distributions of saccade angles are typically more peaked than what
von Mises distribution allows (K. Mulder, Klugkist, van Renswoude, & Visser,
2020). We used the von Mises distribution because it is relatively well known
and can be fitted easily in Stan, whereas alternative distributions — such as the
power Batchelet distribution as proposed by K. Mulder et al. (2020) — would
make the implementation much more complicated. A second potential mis-
specification of the horizontal bias could be that the current implementation
assumes that at any point in time, it is equally likely to make a saccade to the left
direction as to right direction. However, this is likely not true, as intuitively we
could think that having a fixation very close to a left border of the scene would
lead to a rightward saccade with a very high probability (Clarke, Stainer, Tatler,
& Hunt, 2017). This assumption could have underestimated the weight of the
horizontal bias contribution compared to the other factors.

Additional model misspecifications could arise from modeling many pa-
rameters as fixed across participants and stimuli. In the current model, we only
modelled the most obvious source of individual differences — the width of the
attention window and the decision boundary — as random between partici-
pants. Importantly, these parameters only affect fixation durations, therefore
the current model cannot capture individual differences in selecting fixation
locations. However, it is probable that to better account for the patterns in the
data (and to justify generalizibility to a population of observers and a popula-
tion of stimuli; Yarkoni, 2019), we would need to model many of the currently
fixed parameters as random. For example, it is desirable to assume that partici-
pants can differ in the weights of the different factors, or that the importance of
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different factors are different even in different stimuli. Being able to generalize
beyond the current data set was however not the focus of this article. However,
the model is relatively flexible and including parameters as random should be
possible in future applications. However, as explained above, the aim of this
article is not a generalization per se, for this reason the current model is per-
haps not unreasonably simplistic. Additionally, allowing the model to capture
random effects does not automatically ensure generalizability, and additional
effort and checks need to be put in place when designing the experiment.

The current implementation of the model does not capture differences be-
tween images. This means that one is not able to investigate the effect of the
differences of total saliency or other factors, such as the number of objects on
the screen, between different images on the eye movement behavior. This is due
to the constraint that 1) the factor weights sum to 1 and are set equal between
images, 2) observed factors (such as saliency) are normalized before entering
the model. It is possible to either relax these constraints or add more param-
eters accounting for the differences between images, which is a candidate for
future extensions. However, careful development and validation of different
approaches should precede the application. As such, it is not presented in this
article.

It is possible that the proposed mechanism underlying the model’s archi-
tecture will need to be adapted in the future. For example, our assumption
is that observers linger on a current fixation for the time it takes to decide to
move to another location. It is possible that a different mechanism drives fix-
ation durations. We also assume that the time it takes to select a new fixation
location, and plan and execute the saccade is zero, that observers plan new tar-
get fixations only one step ahead (ignoring pre-planned saccades), or that once
a decision to make a saccade is made, there is no stopping in launching it —
assumptions that were relaxed in different modeling approaches (Nuthmann,
2017; Nuthmann et al., 2010; Trukenbrod & Engbert, 2014). We also assume
that different factors combine in an additive manner (and can only increase the
intensity), which may not be a realistic assumption (Barthelmé et al., 2013) –
for example, a typical factor that is plausibly affecting fixation locations is the
inhibition of return, which inhibits intensity of locations that were already vis-
ited (Klein, 2000). We believe that such alternative conceptual ideas could be
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contrasted with the current model by developing new mathematical and statis-
tical models that concretely implement these. Having specific models that are
derived from concrete theoretical assumptions will hopefully facilitate our un-
derstanding of the real generative mechanisms (Borsboom et al., 2020; Schütt
et al., 2017) that are relevant in eye-movement research.

We believe that similar attempts to modelling eye movements can influ-
ence both experimental practice as well as the theoretical advancements in
the eye-tracking research. We made our code available online (github.com/
Kucharssim/WALD-EM), along with additional materials that provide details
about building and applying the model, so that other researchers can seek inspi-
ration and help, if they wish to use our ideas for furthering their own work. Ad-
ditional work should be done on the front of model validation through more
extensive simulation studies. We hope that the current model will eventually be
superseded by a better one — which would be a good sign of a healthy progress
of our scientific understanding of visual perception. In the meantime, we hope
that the proposed model will spark interest in applied and theoretical research
of eye movements and provide valuable insights.

Open Practices Statement
The data, code and other materials are publicly available at the project’s public
repository: github.com/Kucharssim/WALD-EM.

The analyses in this manuscript are purely exploratory; all data were col-
lected prior to the analysis. None of the analyses were preregistered. All mod-
eling decisions were made after we have collected the data, but we did in fact
split the data set in a training and test set before any modeling exercises.

https://github.com/Kucharssim/WALD-EM
https://github.com/Kucharssim/WALD-EM
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Abstract

In cognitive tasks, solvers can adopt different strategies to process information
which may lead to different response behavior. These strategies might elicit differ-
ent eye movement patterns which can thus provide substantial information about the
strategy a person uses. However, these strategies are usually hidden and need to be in-
ferred from the data. After an overview of existing techniques which use eye movement
data for the identification of latent cognitive strategies, we present a relatively easy to
apply unsupervised method to cluster eye movement recordings to detect groups of
different solution processes that are applied in solving the task. We test the method’s
performance using simulations and demonstrate its use on two examples of empirical
data. Our analyses are in line with presence of different solving strategies in a Master-
mind game, and suggest new insights to strategic patterns in solving Progressive matri-
ces tasks.

3.1 Introduction

Traditionally, response behavior such as accuracy and more re-
cently response time are typically used to make inferences about par-
ticipants’ cognitive states, processes, or abilities to solve cognitive tasks

(Groner & Groner, 1982; van der Maas, Molenaar, Maris, Kievit, & Borsboom,
2011). Eye movements are a valuable source of information which extends our
ability to make this kind of inference (e.g., Findlay & Gilchrist, 2003).

However, analyzing eye-tracking data is a challenging problem especially
when cognitive strategies are to be inferred from the locations at which partic-
ipants look and the order in which they look at them. Analyzing the informa-
tion about the spatial and temporal dimensions of eye movements is commonly
referred to as scanpath analysis, where the term scanpath concerns the spatio-
temporal sequence of fixations and saccades, a term coined by Noton and Stark
(1971).

Pioneering work of Yarbus (1967) showed (among other discoveries, Tatler,
Wade, Kwan, Findlay, & Velichkovsky, 2010) that giving different instructions
to observers changes their gaze behavior. This inspired the eye-tracking research
community to devote its attention towards the so called inverse Yarbus prob-
lem (Greene, Liu, & Wolfe, 2012; Haji-Abolhassani & Clark, 2014): in this area
of research, the question is whether it is possible to infer a task or a strategy
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from eye movement patterns rather than whether a task or strategy invokes dif-
ferent gaze behavior. Most of the applications to investigate the inverse Yarbus
problem deal with situations where we know what task or strategy a participant
uses, e.g., using an experimental manipulation or recruitment based on diagno-
sis or a cognitive development stage. This enables researchers to use supervised
techniques to show that some form of eye-tracking data representation can be
used to describe the strategy of the observed groups. The representations range
from similarity measures based on string edit and sequence methods (Cristino,
Mathôt, Theeuwes, & Gilchrist, 2010; Glady, Thibaut, & French, 2013; Kübler,
Rothe, Schiefer, Rosenstiel, & Kasneci, 2017; von der Malsburg & Vasishth,
2011), classifying raw eye tracking statistics (Boisvert & Bruce, 2016; Greene et
al., 2012; J. M. Henderson, Shinkareva, Wang, Luke, & Olejarczyk, 2013; Hild,
Voit, Kühnle, & Beyerer, 2018; Kanan, Ray, Bseiso, Hsiao, & Cottrell, 2014),
Markov models (Groner & Groner, 1982; Groner, Walder, & Groner, 1984) or
hidden Markov models (Coutrot et al., 2018; Haji-Abolhassani & Clark, 2014;
Kit & Sullivan, 2016; Y. Liu et al., 2009). For a review of different approaches to
predict a task from eye movements see Boisvert and Bruce (2016). However, the
question of how to infer a task or a strategy is a topical issue especially when it
is unobserved (i.e., latent) and has to be inferred from the eye movements alone
(i.e., a latent inverse Yarbus problem). This is precisely the issue of the current
study.

3.1.1 Discovering latent groups
Latent groups are of interest whenever there is a reasonable expectation that ob-
servers might use a set of qualitatively different approaches to the task, and these
differences would manifest through their gaze behavior, but it is unknown
which observer uses which approach on which stimuli, other than what can
be inferred from the eye movements themselves. This distinguishes the latent
group problem from the prediction problem. In the prediction of a task, one
has the information about the groups of observers which are supposed to quali-
tatively differ in the eye movement patterns and needs to learn which features of
eye movements discriminate between these groups. In the latent group prob-
lem, one has to learn about the presence or absence of qualitatively distinct
groups, and identify the features of the eye movements that are characteristic of
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these groups. The discussion of latent groups manifesting through eye move-
ments appears in the context of cognitive tasks (Glady et al., 2013; Hayes, Petrov,
& Sederberg, 2011; Hayes et al., 2015; Loesche, Wiley, & Hasselhorn, 2015; Vi-
gneau, Caissie, & Bors, 2006), decision making (Polonio & Coricelli, 2018;
Stewart, Gächter, Noguchi, & Mullett, 2016), visual search tasks (Crosby &
Peterson, 1991), face recognition and exploration (Chuk, Chan, & Hsiao, 2014,
2017; Chuk, Crookes, Hayward, Chan, & Hsiao, 2017; Coutrot, Binetti, Har-
rison, Mareschal, & Johnston, 2016), reading (Meseguer, Carreiras, & Clifton,
2002; von der Malsburg & Vasishth, 2011), and various other topics (Hayes &
Henderson, 2017; Y. Liu et al., 2009; West, Haake, Rozanski, & Karn, 2006).

In the context of cognitive tasks, the detection of qualitatively distinct
groups of eye movements can be especially informative, because these groups
might be related to a cognitive strategy a person uses to solve the problem at
hand (Bethell-Fox, Lohman, & Snow, 1984; P. A. Carpenter, Just, & Shell,
1990). Using the eye-tracking patterns to identify these strategies can bring ad-
ditional insights as to how people solve these problems and can thus comple-
ment more conventional analyses of response behavior (Gierasimczuk, van der
Maas, & Raijmakers, 2013; Steingroever, Jepma, Lee, Jansen, & Huizenga, 2019;
van der Maas & Straatemeier, 2008).

Detecting latent groups from eye-movements can be viewed similarly as de-
tecting latent groups from response behavior (Steingroever et al., 2019; van der
Maas & Straatemeier, 2008), with the only difference being the type of data that
are used as an input. Generally, the goal of detecting strategies can be achieved
by unsupervised clustering methods or mixture modeling of the eye movement
data. Unsupervised methods for clustering similar eye movement patters has al-
ready been used in context of face recognition (clustering hidden Markov mod-
els, e.g. Chuk et al., 2014; Chuk, Chan, & Hsiao, 2017; Chuk, Crookes, et al.,
2017), reading (latent profile modelling based on scanpath similarity measure,
von der Malsburg & Vasishth, 2011), free viewing (hierarchical clustering based
on similarity measure, West et al., 2006), visual search (manual classification,
Crosby & Peterson, 1991), or useability testing (Goldberg & Helfman, 2010a,
2010b), among others.

In the context of cognitive tasks hypotheses about latent solving strategies
are currently not always tested using latent group analyses. In many cases, based
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on theoretical expectations on how the latent strategies should manifest, re-
searchers first define aggregate statistics from the eye movements (e.g., num-
ber of transitions, frequency of transitions between different areas of interest,
etc.). Then they relate them to performance, thereby showing that different
strategies result in different eye-movement statistics that are subsequently cor-
related with performance in the task at hand (Laurence, Mecca, Serpa, Martin,
& Macedo, 2018; Loesche et al., 2015; Vakil & Lifshitz-Zehavi, 2012; Vigneau
et al., 2006), although an alternative approach has been proposed to model
the eye-tracking data (Successor Representation Scanpath Analysis (SRSA),
Hayes et al., 2011, 2015). In short, SRSA builds successor representation ma-
trices which contain information about the higher order transition dependen-
cies in the data, which are then reduced in smaller number of dimensions and
used as predictors of performance in the task. By adjusting parameters that
control the specifications of these matrices, the method searches for a solution
which maximizes the prediction of the task performance (i.e., a semi-supervised
approach whereby task performance substitutes an indicator of the strategy,
Hayes et al., 2011, 2015). It is often the case that the relationship between the la-
tent strategy and the task performance (or other variable) is itself an empirical
question. In this situation, conducting an unsupervised latent group analysis
first will enable us to separate two questions from each other – first, whether we
can detect qualitatively different eye movement patterns, and second, whether
these patterns relate to performance (or other variables or interest). Crucially,
this approach allows discovering groups that are not necessarily related to per-
formance, and thus provides an opportunity to assess the latter question em-
pirically. This distinction is important when the sole predictive performance is
not of such an importance compared to assessing theories about qualitatively
different cognitive processes, and to explain, rather than predict, individual dif-
ferences (for in depth discussion of the trade-off between prediction and expla-
nation, see Yarkoni & Westfall, 2017).

3.1.2 Eye movement representation
To conduct a latent group analysis, a choice needs to be made how to repre-
sent the eye movements data (in terms of its spatial and temporal features) to
serve the purpose of finding the latent groups in the specific context. The need
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to choose between different representations arises due to the fact that the raw
eye-tracking data are, in their totality, too complicated (and perhaps noisy) to
provide meaningful insights into the phenomenon under investigation. Thus,
researchers usually need to define which features of the data are meaningful
or discriminatory for the specific application and model them as such. For
example, many authors emphasize individual differences in the processing of
facial features, resulting in a distinction between holistic and analytic strate-
gies in face recognition (Chuk et al., 2014; Chuk, Chan, & Hsiao, 2017; Chuk,
Crookes, et al., 2017; Groner et al., 1984). Thus, hidden Markov models are
suitable for this purpose as they allow to identify the important parts of the
stimulus in a bottom-up manner. Furthermore, the transition patterns of the
hidden Markov model between the facial features enables to discriminate be-
tween left-eye biased and right-eye biased analytic patterns. Based on a careful
consideration of the specifics of eye movements in reading, von der Malsburg
and Vasishth (2011) use their own similarity measure which does not require
discretization of the stimulus into regions of interest and can take into account
the fixation duration, which is important in the context of syntactic analysis of
sentences. Another approach (West et al., 2006) relies on string edit distances
(Levenshtein, 1966; Needleman & Wunsch, 1970; Waterman, 1981) to cluster
sequences based on similarities between pairs of eye movement recordings.

In case the stimuli can be unambiguously divided into distinct meaningful
areas of interest and the number, shape and position of these areas is assumed
to be constant between the latent groups (as is the case in many cognitive tasks,
e.g., Polonio & Coricelli, 2018; Trutescu & Raijmakers, 2016; Vigneau et al.,
2006), a promising candidate for such representation is a transition matrix be-
tween pre-defined areas of interest, in which we quantify the probability of the
next fixation on any area of interest conditionally on the position of the current
fixation. Constructing or fitting transition matrices is relatively well established
in the eye-tracking literature, either as descriptive statistic of the transition pat-
terns (Althoff & Cohen, 1999; Ellis & Stark, 1986; Ponsoda, Scott, & Findlay,
1995) or as an integral set of parameters specifying (hidden) Markov models (see
Coutrot et al., 2018; Visser, 2011, and references therein). Compared to the hid-
den Markov models, constructing transition matrices from the fixated areas of
interest significantly reduces the complexity of the analysis at the expense of
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binning fixations into pre-defined areas of interest instead of treating them as
hidden states that need to be estimated from the data. This essentially simpli-
fies the problem into a representation of categorical time-series (Pamminger &
Frühwirth-Schnatter, 2010), without the need for a complicated evaluation of
the likelihood of each eye movement sequence as a whole as is the case in hid-
den Markov models. It is important to note that if the areas of interest cannot
be defined in advance (e.g., because their position is itself a topic of empirical
investigation), the data are too noisy relative to the sizes of the areas of interest,
or if there are too many bordeline fixations, this simplification may not be jus-
tified and other, more complex, approaches (e.g., hidden Markov Models) may
be necessary.

Despite the fact that by using only the first-order transition matrices one
potentially ignores informative features of the eye movements data (Hayes et
al., 2011; von der Malsburg & Vasishth, 2011), they can still provide rich informa-
tion about the transition patterns between the areas of interest, patterns which
in many cases should be different between solution strategies that participants
apply in cognitive tasks. Using transition matrices should be, in some cases (as
we show later), sufficient to detect latent groups, while providing rich descrip-
tion of the characteristic features of the transition patterns that define these
groups.

3.1.3 Goals & outline
Following the arguments in the previous sections, we believe that a method
for detecting latent groups from eye movement data would be informative to
investigate the existence of different solution strategies in cognitive tasks, and
eventually also their relation to task performance. Such a method should gener-
ally meet the following desiderata. First, the eye movement patterns should be
analyzed (summarised) such that the features of the hypothetical strategies can
be detected. Second, the method should be unsupervised to allow detecting la-
tent groups, even if they do not relate to external variables. Third, it should be
possible to use some selection method for the number of such groups. Fourth,
the classification of an eye-movement pattern into a latent group should be pos-
sible on an individual item basis to allow the possibility that participants switch
between strategies during the task (for example, due to learning).
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This article demonstrates the use of transition matrices as a representation
of eye movements in order to detect latent groups of similar eye movement
transition patterns. Specifically, we use a relatively easy to apply unsupervised
method to discover latent groups, and present ways in which the classifications
can be used in further analyses.

The structure of the article is as follows. In the next section, we provide
details about how to construct transition matrices, and present the method we
use for their clustering. Next, using simulations, we show that this method is
able to retrieve the groups corresponding to strategies for solving a Mastermind
Game and present an application of the method to real data. Then, we apply
the method to a data set of the Wiener Matrizen Test (a test very similar to the
Raven’s Progressive Matrices; Laurence et al., 2018). We conclude with discus-
sion of our findings, as well as with the limitations, alternatives, and extensions
to our approach.

3.2 Clustering transition matrices
Our goal is to introduce a method that can be used for unsupervised clustering
of eye movement sequences. Our approach is the following. First, we process
the fixation coordinates into pre-specified areas of interest (AOIs). Such ap-
proach is typical in eye-tracking literature, at least in tasks with clearly distinct
meaningful parts of the stimulus, although there is some discussion on how
to optimally choose and delineate AOIs (e.g., R. S. Hessels, Kemner, van den
Boomen, & Hooge, 2016).

From each individual sequence of the fixated AOIs, we create the transition
probability matrix, where each row corresponds to a “sender” AOI, and each
column to the “receiver” AOI. Each row of the matrix is computed by counting
the number of transitions from the sender AOIs to all other AOIs and dividing
the row by the sum of the total transitions from that AOI. The entries of the
d×d transition probability matrixM can be interpreted as follows: Given that
a fixation is on the ith AOI, the probability that the next fixation is on the jth

AOI is equal to Mij .
All transition matrices are then reshaped into vectors of lengthd2 and stored

in a data matrix where the rows correspond to the individual matrices (i.e., rep-
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resentations of the individual AOI sequences), and the columns correspond to
the cells in the transition probability matrices. The resulting data matrix is then
subjected to the standard k-means clustering algorithm (Hartigan & Hartigan,
1975).

As an unsupervised method, k-means provides us with an opportunity to
find distinct groups of eye movement patterns, patterns which differ in their
transition matrices. Scree plots can be used to diagnose solutions for different
numbers of clusters. Furthermore, each cluster is assigned a mean transition
matrix which identifies the characteristic features of the transition patterns in
each groups, which can be used to interpret the groups and assign a label ac-
cording to hypothesised cognitive processing. We use standard k-means based
on minimizing the within-cluster sum of squared Euclidean distances from the
centroids to ease of interpretation of the cluster centroids. Relative Euclidian
distances of individual matrices to the cluster centers can be used to assess the
representativeness of each eye movement recording of that particular group.
The cluster assignments indicators can be used for further analyses, for example
examining the relationship of the clusters to performance. The demonstration
of our approach follows in the next two examples and a simulation study.

3.3 Application: Deductive Mastermind

Here, we present an example of detecting cognitive strategies in a Deductive
Mastermind Game (DMM). In the DMM, the player is supposed to deduct a
sequence of flowers based on multiple “conjectures” composed of a sequence
of flowers and their corresponding feedback presented as a collection of colors
next to the conjecture. The green feedback means that a flower in the conjecture
belongs to the solution, red feedback means that a flower does not belong to
the solution, and orange feedback means that a flower belongs to the correct
solution but is on a wrong place in the sequence (Gierasimczuk et al., 2013).

The DMM was implemented as a part of web-based math and logic
training system in primary schools called Math Garden (rekentuin.nl or
mathsgarden.com). Gierasimczuk et al. (2013) analyzed data collected with
Math Garden and revealed that the player ratings and the item difficulty have
a tri- and bi-modal distributions, respectively. Logical analysis of the game

https://rekentuin.nl
https://mathsgarden.com
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showed that the items can be solved using different strategies, ones that vary
in the number of steps a player needs to deduct the correct solution. One pos-
sible explanation for the multimodality of the player ratings might be that the
population of players is a mixture of people using different strategies, strategies
which relate to the efficiency in solving the game.

The logical analysis predicts at least two strategies to occur during solving
the items. The first strategy is characterized by scanning the feedback in the
order in which it is presented (i.e., from top to bottom) – this prediction relies
on the assumption that it is a natural (i.e., learned) way of processing infor-
mation before internalizing the differences in information value that different
feedback holds. The prediction of the second strategy, in contrast, relies on the
fact that each row of stimuli can have different information value. Thus, this
strategy would be characterized by selectively scanning the feedback starting
from the conjectures which contain the most information and proceeding to
those which complement it. Figure 3.1 shows one of the items with superim-
posed eye-tracking patterns under the two strategies. Notice that the first order
transition matrix differs between the strategies. Thus, it should be possible to
discriminate between them using only the first order transition patterns.

3.3.1 Methods
We use subset of the data that was collected with adults outside the educational
system as part of a larger project (Trutescu & Raijmakers, 2016). The data are
available at osf.io/he43s/. Twenty-six university students with normal or
corrected-to-normal vision participated in the study. Two participants were ex-
cluded from the analysis due to missing data in the eye-tracking measurements.
The study comprised of one learning block (13 items) and two test blocks (16
items each) in randomised order of the items within each block. The 2-pin
items were constructed as an adapted version of the DMM task suitable for
eye-tracking by adjusting the layout of the displayed conjectures (see Appendix
in Trutescu & Raijmakers, 2016). The items in the learning phase were designed
such that they are easily solvable regardless of the scanning strategy; items with
all combinations of feedback were presented to give participants the opportu-
nity to establish the difference between feedback types. For a concise presenta-
tion of the current method, we further analyse only four items (two from each

https://osf.io/he43s/
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Figure 3.1: Synthetic data of two strategies in one of the selected Mastermind
games. The left panel shows the top-to-bottom strategy, and the right panel
shows the systematic strategy of selective processing. The top panel shows ex-
amples of the scanpaths, where dots correspond to fixations (the color gradually
changes from bright green to dark red based on the order of the fixations) and
lines connect the successive fixations (i.e., saccades). Bottom panel shows the
transition matrices of the simulated strategies averaged over 1,000 simulations.
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test block) containing orange-orange feedback at the third row. These items
can be solved by focusing attention only on the third row, as the orange-orange
feedback informs to swap the positions of the two presented flowers, see Fig-
ure 3.1.

The eye movements were recorded using EyeLink-1000 eye tracker with 500
Hz sample rate (SR Research Ltd., Ontario, Canada). Participants were seated
at a desk with a chin rest about 55 cm in front of a 17-inch computer monitor,
subtending an approximate 27°× 34° visual angle. Before the data collection,
a five-point calibration was used, which was repeated until the recorder point
of gaze reached the best possible quality.

The raw data were parsed into fixations and saccades using Gazepath algo-
rithm (van Renswoude et al., 2018). The identified fixations were classified into
six rectangular areas of interest, one each for the row of the task in the left panel,
and the sixth belonging to the response area on the right panel (see Figure 3.1).
Thus, "scanpath" is in our case operationalized as a series of fixated AOIs. By
doing so we artificially segregate the items into meaningful chunks of informa-
tion: the units of information are the pairs of flowers and associated feedback,
which corresponds to the definition of the conjectures in the logical analysis
of the Mastermind game (Gierasimczuk et al., 2013). This approach imposes
rather strong assumptions on the semantic connotation (i.e., the structure of
the task as interpreted by individual participants) and could be prone to mea-
surement noise (in applications where the AOIs are relatively small or close to
each other); we nevertheless consider this a sensible approach in the current
task as the rows of the stimuli were designed to be visually well separated and
correspond to the semantic denotation of the task, which had been commu-
nicated through the experimenter’s instructions and demonstrated during the
learning block.

Transition matrix eye movement analysis

Before clustering the data, we conducted a simulation study in order to inves-
tigate the method’s performance. We previously analyzed all scanpaths on the
four selected items for which classification into the top-to-bottom and system-
atic strategy was possible by visual inspection. We wrote a simulation function
which mimics the two strategies (top-to-bottom and systematic, shown in Fig-
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ure 3.1). The simulated patterns were matched with real data with respect to
several criteria (see osf.io/82fau/ and osf.io/bz3ny/). This enabled us
to simulate an arbitrary number of participants using one or the other strategy
with some variability in the patterns within the strategies (associated R code at
osf.io/jxwrk/).

We tested the method’s performance with respect to two varying features of
the simulated data. For each of the features, we selected three values, resulting
in a 3 × 3 simulation design. The features we varied and their values were the
following:

1. Sample size: n = (20, 60, 100). We varied the total number of the par-
ticipants in the simulated studies.

2. Proportion of strategies: p = (0.25, 0.5, 0.75). We varied the propor-
tion of participants using one or another strategy. The value of p corre-
sponds to the proportion of participants using the top-to-bottom strat-
egy. This number was treated as a sample proportion (not population
proportion) and thus there was no sampling variance between the simu-
lations using the same value.

We simulated 600 data sets per each combination of parameters (totaling
3× 3× 600 = 5400 simulated studies). In each simulation, each participant
solved only one item. This allowed us to inspect the robustness of the method
even for item-wise analysis (i.e., with relatively sparse data).

For each data set, the procedure was as follows. Each individual sequence
of AOIs was converted to a 6 × 6 transition matrix. The individual matrices
were reshaped into a vector of length 6 × 6 = 36 and stored into a n × 36

matrix. The k-means clustering was applied to this matrix with solutions from
1 to 10 clusters to inspect whether the scree plot identifies the correct number
of clusters (2).

Next, we assumed that the correct number groups was selected and inves-
tigated the classification accuracy of the two-cluster solution. We also investi-
gated the stability and accuracy of the estimated cluster centers. To do this, we
had to resolve an issue of label switching. In each simulation, we created a 2
× 2 confusion matrix of the true group membership against the estimated la-
bels given by the k-means. If the sum of the diagonal entries in this matrix was

https://osf.io/82fau/
https://osf.io/bz3ny/
https://osf.io/jxwrk/
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greater than the sum of the off-diagonal entries of the matrix, we kept the labels
as they are. If this was not the case, the cluster indicators from k-means were
relabeled.

After the simulations were conducted, we applied clustering of transition
matrices to the real data. The subset of the whole data consists of 24× 4 = 96

eye movement sequences for cluster analysis. For each sequence, we calculated
the 6 × 6 transition probability matrix and reshaped it into a vector of length
36. The resulting 96× 36 matrix was subjected to the k-means clustering.

3.3.2 Results

Simulations

Extracting the correct number of strategies

A rule of thumb for selecting the number of clusters is to inspect a scree plot
to see at which point the amount of unexplained variance by the clusters stops
decreasing rapidly. Given the subjective nature of this procedure, we cannot
report exact numbers of the cases where the scree plot would identify the true
number of latent groups (2) correctly. However, from a qualitative inspection
of the scree plots, we saw that the classic “elbow” shape emerges mostly when
1) the sample size is large, and 2) when the sizes of groups are even. Decreasing
the sample size results in mostly uninformative scree plots (i.e., the scree plot
decreases gradually).

Classification accuracy

For all of the simulations, we inspected how accurate is the participant assign-
ment using the solution with two latent groups.

Table 3.1 shows the median and interquantile range of the assignment accu-
racy for all combinations of p andn. Overall, the classification accuracy is high,
in most scenarios higher than 90%. The total accuracy is the highest when the
two strategies are equally represented in the sample, and slightly increases with
the sample size. The accuracy of correctly classifying top-to-bottom pattern
is slightly lower than the accuracy of classifying the systematic strategy, which
might be due to the fact that the top-to-bottom pattern is more variable, and
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p n Total Systematic Top-to-bottom

0.25 20 0.90 (0.75, 0.95) 0.93 (0.80, 1.00) 1.00 (0.60, 1.00)
60 0.95 (0.90, 0.97) 0.96 (0.89, 0.98) 0.93 (0.87, 1.00)

100 0.95 (0.92, 0.97) 0.96 (0.92, 0.99) 0.96 (0.92, 0.96)

0.50 20 0.95 (0.85, 1.00) 1.00 (0.90, 1.00) 0.90 (0.80, 1.00)
60 0.95 (0.92, 0.97) 0.97 (0.93, 1.00) 0.93 (0.87, 0.97)

100 0.94 (0.92, 0.96) 0.98 (0.96, 1.00) 0.92 (0.88, 0.96)

0.75 20 0.80 (0.70, 0.90) 1.00 (1.00, 1.00) 0.80 (0.67, 0.87)
60 0.83 (0.73, 0.92) 1.00 (1.00, 1.00) 0.78 (0.64, 0.89)

100 0.84 (0.75, 0.90) 1.00 (0.96, 1.00) 0.79 (0.68, 0.88)

Table 3.1: Median and interquantile range of classification accuracy based on
the k-means clustering of transition matrices. Column Total denotes the
proportion of correctly classified cases, Systematic denotes the proportion of
correctly classified cases simulated under the systematic pattern, and Top-to-
bottom denotes the proportion of correctly classified cases simulated under
the top-to-bottom pattern. Column p denotes the proportion of the top-to-
bottom patterns in the sample, n denotes the total sample size.

can also contain characteristic features of the systematic pattern (namely, tran-
sitions from the third row to the response).

The assignment accuracy means that if we wished to estimate the propor-
tion of the strategies in the sample, we would estimate it correctly, except when
the top-to-bottom pattern is dominant. In that case, a large portion of the true
top-to-bottom patterns would be classified as systematic, leading to underesti-
mation of the number of top-to-bottom patterns in the data, as can be seen in
Table 3.2.

Stability of strategy representation

We also inspected whether the cluster centers are stable (i.e., show relatively
similar transition matrices across simulations). Table 3.3 shows the median and
interquantile range of the pairwise Pearson’s correlations between the cluster
centers. Overall, the correlations are quite high, suggesting that the represen-
tations of the transition matrices remains similar across the simulations. The
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p

n 0.25 0.5 0.75

20 0.25 (0.20, 0.30) 0.45 (0.40, 0.50) 0.60 (0.50, 0.70)
60 0.27 (0.25, 0.30) 0.47 (0.45, 0.50) 0.60 (0.48, 0.68)

100 0.27 (0.25, 0.29) 0.48 (0.45, 0.50) 0.60 (0.51, 0.66)

Table 3.2: Median and interquantile range of the proportion of patterns clas-
sified as top-to-bottom. Columns p indicate the true proportion in the data,
column n denotes the total sample size.

average cluster representations across all simulations is shown in Figure 3.2.

Figure 3.2: The average transition matrices identified by the k-means across all
simulations.

Data

Here, we present the results of thek-means clustering applied to the real DMM
data (Trutescu & Raijmakers, 2016) from four items. The R script is at osf
.io/g2yp4/. The scree plot was uninformative as it did not show a clear “el-
bow” pattern. Thus, we inspected the agreement between the solutions span-
ning from two to four clusters.

Figure 3.3 shows the average transition matrices for the two, three and four

https://osf.io/g2yp4/
https://osf.io/g2yp4/
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cluster label

p n systematic top-to-bottom

0.25 20 0.91 (0.87, 0.94) 0.71 (0.44, 0.82)
60 0.97 (0.96, 0.98) 0.91 (0.87, 0.94)

100 0.98 (0.98, 0.99) 0.95 (0.93, 0.96)

0.50 20 0.88 (0.84, 0.91) 0.89 (0.84, 0.92)
60 0.96 (0.94, 0.97) 0.96 (0.95, 0.97)

100 0.97 (0.96, 0.98) 0.98 (0.97, 0.98)

0.75 20 0.77 (0.67, 0.84) 0.91 (0.86, 0.93)
60 0.90 (0.85, 0.93) 0.96 (0.94, 0.98)

100 0.93 (0.89, 0.96) 0.98 (0.96, 0.98)

Table 3.3: Median and interquantile range of the pair-wise Pearson’s correla-
tions of the cluster centers. Column p denotes the proportion of the top-to-
bottom patterns in the sample, n denotes the total sample size.

cluster solutions, and the pair-wise confusion matrices of the cluster member-
ship. Comparing the two and three clusters solution suggests that the cluster 1
from the two clusters model is almost perfectly separated in two clusters under
the three clusters model (see confusion matrix in the first row and third col-
umn). In addition, the four clusters solution finds one additional sub-cluster
which is characterized by transitions between conjectures 1-3, but does not pro-
ceed further (which could be explained by the the participant attempting to
solve the item from top to bottom and terminating the process once the most
informative feedback was found). Overall, these results suggest that the data
are in line with the prediction of two general patterns – that of systematically
searching for the most informative feedback, and that of attempting to solve
the item in the order of conjectures as they are presented.

To check qualitatively whether the fixation sequences clustered in the
groups correspond to the systematic and top-to-bottom patterns as described
above, we also plot the most representative sequences for each of the clusters.
We compute the “representativenness” of a sequence to a particular cluster as
an Euclidian distance of the transition matrix of the sequence to that cluster
center, relative to the sum of the Euclidian distances to all other clusters.
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Figure 3.3: The cluster centers of the k-means solutions with two, three and
four clusters, and the confusion counts of the different solutions. Each row
corresponds to one solution (two, three, and four centers from top to bottom).
The bars on top right of the Figure correspond to the overlap between cluster
assignments. For example, panel 2 vs 3 indicates that most of the cases assigned
to the first and second cluster in the three cluster solution were classified into
the first cluster in the two cluster solution, whereas most of the cases classified
into the third cluster with the three cluster solution were classified into the sec-
ond cluster in the two cluster solution.
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Figure 3.4: Each row shows five example scanpaths assigned to one of the clus-
ters. Fixations to particular AOIs are shown as dots and transitions are con-
nected with lines.

Figure 3.4 shows the fixation sequences, where the points show the individ-
ual fixations on particular AOIs (on the y-axis) as a function of time (time has
been normalized to span between 0 and 1). Because there is a strong overlap be-
tween the cluster assignments between the 2-4k-means solutions, we only show
the representative fixation sequences grouped into four clusters. Clusters 1 and
2 are characterized by transitions between the third row and the response (AOIs
number 3 and 6). Cluster 3 is characterized by a period of fixations on the first
three rows, followed by transitions to the response. Cluster 4 is the most vari-
able, having characteristic pattern of progression from the top to the bottom
of the game with frequent transitions to the response in between. Overall, clus-
ters 1 and 2 align with the predicted systematic patterns, whereas clusters 3 and
4 align with the top-to-bottom pattern. The distinction between the clusters 3
and 4 is that patterns in the cluster 3 usually terminate very quickly after fixat-
ing the third row (which contains sufficient information to deduce the correct
solution), whereas patterns in cluster 4 do not seem to have this pattern.

The clustering suggested that the groups also differ in terms of the number
of fixations. This would be consistent with the view that the current items are
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Figure 3.5: Distribution of fixations of the four clusters.

relatively easy to solve when using the systematic search (i.e., focusing on the
most informative feedback).

Figure 3.5 shows the distribution of the number of fixations for each clus-
ter, as well as the marginal distribution over all data. We conducted exploratory
analyses by fitting the fixation counts with multilevel negative binomial model
using R package brms (Bürkner, 2017, 2018) to see whether the apparent dif-
ferences between the clusters are statistically supported (see osf.io/87ahz/).
The results indicated that the cluster 4 has the highest number of fixations, the
cluster 3 has the second highest, and the cluster 1 and cluster 2 are comparable,
see Figure 3.6. However, trying to uncover the groups based on the fixation
counts would be a hard task, judged by the apparent absence of multimodality
of the overall distribution of fixation counts.

Lastly, we set out to investigate whether the clusters are associated with dif-
ferent probability of a correct answer, although the current set of items does
not allow a lot of room for modelling on this part as the items are relatively
easy (i.e., the percentage of correct answers is 88.5%). In particular, the first
three clusters had perfect or near perfect performance on these items, whereas

https://osf.io/87ahz/
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Figure 3.6: The average number of fixations of each group with 95% credible
intervals.

cluster
1 2 3 4

n 13 23 29 31
# correct 13 22 29 21
% correct 1 0.957 1 0.677

Table 3.4: Descriptives of the correct answers for each of the clusters.

only 68% of the patterns in the fourth cluster resulted in correct response, see
Table 3.4.

To sum up, we were able to cluster the real DMM data using transition
matrices; in accordance with the expectations, we found two general patterns
– one that is characterized by a systematic selective scanning of the most infor-
mative feedback and another characterized by a search pattern starting at the
top of the item, proceeding downwards. However, the clustering results were
not entirely conclusive regarding the number of clusters and it is possible that
more subpatterns are hidden (i.e., one that starts as the top to bottom pattern
and switches once the most informative feedback is processed). The patterns
differ in the lengths of the sequences, and the four clusters seem to have differ-
ent probability of correct answers. Specifically, the first two clusters have high
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chance of a correct answer as they appear to focus on the feedback which is
sufficient to solve the item. The third cluster also has a high success rate, sug-
gesting that it might be capturing the processes when a participant solves the
item in non-systematic way (i.e., from top to bottom), but deduces the correct
solution once arrived to the most informative feedback.

3.4 Application: Progressive Matrices

In the previous example, we have shown that classifying eye movement se-
quences using clustering of transition matrices is possible, even if the data are
relatively sparse. To illustrate the use of clustering transition matrices in a differ-
ent context, we present a reanalysis of data collected by Laurence et al. (2018).
The data contain eye-tracking recordings of participants who solved Wiener-
Matrizen Test 2 (WMT-2; Formann & Piswanger, 1979; Formann, Waldherr,
& Piswanger, 2011). The WMT-2 is structurally similar to the Raven’s Progres-
sive Matrices (RPM), as both consist of a 3× 3 matrix containing images with
varying features, where the bottom-right item is missing, and a 2× 4 response
alternatives matrix. The goal of the task is to identify which item from the re-
sponse alternatives matrix belongs to the missing part of the 3×3matrix, such
that the varying features complete a logically consistent pattern.

Vigneau et al. (2006) proposed that two distinct general strategies – con-
structive matching and response elimination (Bethell-Fox et al., 1984) – can be
employed when solving the Raven’s Progressive Matrices (RPM). The former
is a systematic strategy of evaluating the matrices to deduce the only correct
solution, which is then found in the response area. In contrast, response elimi-
nation is a strategy of successively considering different responses and evaluat-
ing whether they are consistent with the information given by the matrices or
not. The two strategies should manifest through different eye movement pat-
terns, as constructive matching would yield systematic transitions by rows (or
columns), whereas the response elimination would show a pattern of frequent
transitions from the matrix and the response area. Following the seminal work
of Vigneau et al. (2006), numerous studies followed up the hypothesis to repli-
cate its findings, using mostly summary statistics from the eye-tracking data
(Laurence et al., 2018; Loesche et al., 2015; Vakil & Lifshitz-Zehavi, 2012). More
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recently, a different approach has been applied for describing cognitive strate-
gies taking into account higher order dependencies in the transition patterns
(Hayes et al., 2011, 2015). Here, investigate this hypothesis using clustering of
transition matrices.

3.4.1 Laurence et al. (2018) data

The data analyzed here were collected and reported previously by Laurence
et al. (2018). The data are generated by 34 participants who solved 18 items
(+3 practice items) from Wiener-Matrizen Test 2 (WMT-2; Formann et al.,
2011). The data contain the responses (correct/incorrect) and the processed eye-
tracking data: the fixations were classified into 10 AOIs (osf.io/sgyk3/).
The areas 1–9 correspond to the individual cells in the matrix, starting from
top-left entry, and filling the matrix row-wise (e.g., 1 – top-left; 3 – top-right; 7
– bottom-left, up to 9– bottom-right). The area 10 is the response matrix area,
containing all eight options for selecting the solution. The data is organized as
ordered sequences of fixations on the areas of interest for each participant and
each item. If a fixation did not fall into either of the designated areas of inter-
est, we excluded that fixation from the data, which resulted in deleting 4338

fixations out of the total number of 91267, leading to a 95% inclusion rate.

3.4.2 Methods

Because it has been argued that in the context of Raven’s Matrices, one should
remove repeated fixations within one AOI, as the frequency of repeats is quite
high (especially within the response matrix; Hayes et al., 2011), we use the clus-
tering technique both on data where the repeated fixations were included (i.e.,
using the full data), as well as clustering data after removing the repeated fix-
ations, essentially removing 35880 transitions (about 44.7%). Almost half of
the excluded transitions (15185) were based on the repeated fixations within
the response alternatives matrix.

The rest of the procedure was as follows. First, each fixation sequence was
converted to a transition matrix. The 34× 18 = 612 transition matrices were
reshaped into vectors and stored in a 612 × 100 data matrix. This matrix was
subjected to k-means clustering estimating 1 to 10 clusters to inspect the scree

https://osf.io/sgyk3/
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Figure 3.7: Scree plots from the k-means clustering for the data with repeated
fixations (dots) and without repeated fixations (squares).

plots.

3.4.3 Results

The scree plots from the k-means on data with excluded repeated fixations pro-
vided a modest support for the presence of two groups, whereas the scree plot
on the full data remained inconclusive, see Figure 3.7. In line with previous
literature (Hayes et al., 2011, 2015), we further discuss the results based on the
k-means solution with two clusters; solutions with higher numbers of clusters
yielded qualitatively comparable results (see osf.io/h3nc7/).

On the full data, 271 (42 %) sequences were classified into the first clus-
ter, whereas 293 (48 %) sequences were classified into the first cluster using
the data without the repeated fixations. Overall, the agreement between the
two classifications was high: 516 out of the total 612 sequences (84 %) were
assigned into the same cluster regardless whether the repeated fixations were
excluded or not. Figure 3.8 shows the mean transition matrices of the two clus-
ters. The transition matrix of the first cluster suggests a similar pattern that has
been previously described by Hayes et al. (2011), interpreted as the constructive
matching strategy, indicating high probabilities of transitioning to left or right
relative to the current fixation, which suggests a general pattern of inspecting
the matrices within individual rows. However, the interpretation of the second
cluster is less clear. First, the probabilities of transitioning left or right remain

https://osf.io/h3nc7/
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Figure 3.8: Average transition matrices of the two clusters. Left panel shows
matrices of the first cluster with (top) and without (bottom) repeated fixations,
right panel shows matrices of the second cluster with (top) and without (bot-
tom) repeated fixations.
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Figure 3.9: Top row shows five scanpaths that have been assigned to cluster 1,
bottom row shows five scanpaths that have been assigned to cluster 2 by all three
clustering methods. Repeated fixations are removed.

quite high, but there is also an increased probability to transition up or down,
suggesting inspection of the matrices within columns. Second, under the ex-
pectation that the second cluster is related to the response elimination strategy,
we would expect higher, and more uniformly distributed probabilities on col-
umn 10 (transition probabilities to the response area), but also in row 10 (tran-
sition probabilities from the response area). Although this is generally the case,
the differences compared to the first cluster are rather small, which does not
corroborate strongly that this cluster can be interpreted as the response elimi-
nation strategy.

Figure 3.9 shows examples of the scanpaths that have been assigned to one
or the other cluster. The first cluster is characterized by frequent transitions
from left to right within rows (i.e., 1 → 2 → 3, etc), whereas the second
cluster also shows frequent transitions within columns (i.e., 1 → 4, 2 → 5,
etc).

The approach in the previous studies focusing on strategies in Progressive
Matrices (Laurence et al., 2018; Loesche et al., 2015; Vakil & Lifshitz-Zehavi,
2012; Vigneau et al., 2006) is to inspect, for example the number of toggles
(transitions between the matrix and the alternatives), or the rate of toggling
(number of toggles divided by the response time). Here, we inspected whether
the two uncovered clusters differ in the length of the sequences, number of tog-
gles, or rate of toggling (in this case defined as the number of toggles divided by
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Figure 3.10: Distribution of the number of fixations (left), number of toggles
(middle), and rate of toggling (right) of the two clusters.

the number of transitions). Figure 3.10 shows that the differences between the
clusters are not very pronounced in either of these measures. We did not test
the differences further. However, the results suggest that neither of the clusters
relate to the hypothetical response elimination pattern.

Regardless of the interpretation of the clusters, we inspected their relation
to performance. We fitted an exploratory multilevel logistic model using R
package brms (Bürkner, 2017, 2018) predicting whether the answer was correct
or incorrect with a fixed and random slope for clusters, random intercept for
participants and items (see osf.io/wvy23/). The analyses revealed that the
differences between the clusters vary substantially and the average effect is not
very pronounced; the second cluster performed slightly better, but the results
are inconclusive. Following the focus of the original article, we fitted an ex-
ploratory model which also takes into account item types (i.e., Rule Type items,
Rule Direction items, and Graphical Component Nature items; Laurence et
al., 2018) and their interactions with the clusters (see osf.io/adt89/). Fig-
ure 3.12 summarises the main results. On a descriptive level, the first cluster per-
forms slightly better on the Rule Type items, and the second cluster performs
slightly better on the Rule Direction and Graphical Component Nature items.
However, these differences were very small and inconclusive given the limited
sample size. We found that there was some systemacity between the cluster as-
signment and participants; that is, some participants were assigned consistently
to one cluster over another; the number of these participants was larger than
what would have been expected if participants switched between patterns ran-
domly. Thus, we also explored the possibility that the amount of switching
between the two patterns could be related to performance. However, we did
not find any notable patterns. For more details, see osf.io/2zkj8/.

https://osf.io/wvy23/
https://osf.io/adt89/
https://osf.io/2zkj8/
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Figure 3.11: Left panel shows the marginal average probability of a correct an-
swer of each cluster for the two clusters. Right panel shows the probability of a
correct answer for each cluster and each item separately. The circles denote the
observed proportion of correct answers (and the size of the circle represents the
number of data points), whereas dots denote the mean of the posterior distri-
bution. Error bars correspond to 95% credible intervals.

To sum up, we found two clusters in solving progressive matrices. Con-
trary to the results from previous literature (Hayes et al., 2011, 2015; Laurence
et al., 2018; Vigneau et al., 2006), we did not find a clear pattern that would cor-
respond to the response elimination strategy. However, the two clusters would
roughly correspond to patterns, one of which is predominantly driven by tran-
sitions within rows, whereas the other is characterised by mixtures of transi-
tions within rows and within columns. To our knowledge, the second pattern
is rarely discussed in the literature as a viable alternative to solve the matrices. It
is not impossible that other, more nuanced sub-strategies remained hidden in
our analysis, for example, switching between different patterns (i.e., row-wise,
column-wise, and matrix-response transitions), instead of using these patterns
as a pure cognitive strategies.

3.5 Conclusion & Discussion

In this article, we centralize the idea of classification scanpaths where we can
assume that different strategies to solve a cognitive task could elicit different
types of gaze behavior. To this end, using an unsupervised method for cluster-
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Figure 3.12: Left panel shows the interaction between the three item types and
the cluster with respect to the probability of correct answer. Right panel shows
the probability of a correct answer for each cluster and each item separately.
Error bars correspond to 95% credible intervals.

ing transition matrices, we can discover groups of similar eye movement pat-
terns without the need to assume that the groups differ on some other variable
(e.g., performance in the task). This is of special interest in contexts where the
groups are hypothesized and have to be inferred from the data, as well as the
relationship of the group to the other variables is hypothesized and needs to be
empirically tested. This problem arises frequently in the discussion of strate-
gies in solving cognitive tasks, which we presented with two examples using the
Deductive Mastermind game and Progressive Matrices task.

In the Mastermind example, we showed that we can retrieve patterns that
correspond to systematic search for the most informative feedback, compared
to less systematic scanning patterns guided by the order of the feedback pre-
sented. Such patterns that were predicted based on the logical reasoning analy-
sis of the items in Gierasimczuk et al. (2013). In this example, the differences
between the groups were detectable by visual inspection, which allowed us to
conduct a realistic simulation study. Hence the classification should be rela-
tively easy. From our point of view, this is a virtue of our example: showing that
an automatic method arrives at the same conclusion as working through the
data manually should assure us that the method is indeed valid. Furthermore,
the application of the method to the real data revealed one pattern where the
participant solves the item in a relatively non-systematic way, but switches to
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the systematic pattern once arriving at the most informative feedback, whereas
another pattern suggests that the participant attempts to solve the item in a
relatively non-systematic way, and does not recognize that the third row is suf-
ficient to arrive at the conclusion.

The second application used data from Progressive Matrices items. We
found a pattern corresponding to the one described in the previous literature
(solving analytically the matrices by progressing through the rows, Hayes et al.,
2011, 2015), and one additional pattern that can be roughly described as pro-
gressing through the matrices within their columns, a pattern that has not been
reported previously. Inspecting solutions with more clusters yielded qualita-
tively comparable results suggesting that we were unable to detect any addi-
tional patterns except these two. The patterns we found did not show differ-
ences on various summary measures (derived from eye movements, but also the
performance in the task), thus, it would be hard to disentangle these patterns
using supervised or semi-supervised methods, which have been predominantly
used in earlier attempts to discover strategies in similar cognitive tasks (Hayes
et al., 2011, 2015; Loesche et al., 2015; Vigneau et al., 2006). Contrary to the
previous literature, we did not find a pattern that would correspond to the re-
sponse elimination strategy. It is possible that the chosen representation of eye
movement patterns (i.e., transition matrices) is unable to detect the response
elimination pattern. Another option could be that the response elimination
pattern occurs rarely as a pure strategy, but is rather emerging as a short phase
during solving the items, after more systematic phases (e.g., that a person falls
back on the response elimination after he or she fails to deduce the correct so-
lution using analytic matching). If this is the case, our method could miss this
pattern as it assumes that the eye-movements follow one pattern throughout
solving the individual item (i.e., it is not possible to detect switches between
patterns during solving the task). We believe that a comprehensive re-analysis
of existing data sets (Hayes et al., 2011, 2015; Laurence et al., 2018; Loesche et
al., 2015; Vigneau et al., 2006) using a range of different methods, or a (large-
scale) replication study might be appropriate to find the common ground for
the findings.

Our choice of the specific representation of the eye movement data, and
the method for clustering as well as the distance metric is up for a debate. Dif-
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ferent analytic choices could yield different results, depending on the questions
and context of the analysis. We used transition matrices because the predicted
strategies should differ in the transition matrices, hence, it should be possi-
ble to identify them as such. However, using transition matrices requires pre-
defined areas of interest, and thus the method is limited only to applications
where these areas can be defined without many arbitrary decisions. In these
situations, transition matrices are simple to construct and interpret, although
this should be done with caution. Some authors (Hayes et al., 2011) suggested
that looking only at first-order transition probabilities is too much of a sim-
plification of the eye movements data. Further, even very different scanpaths
can have similar transition matrix (von der Malsburg & Vasishth, 2011). Thus,
there is an intrinsic epistemological asymmetry – it is easier to discover qual-
itatively different groups of eye movement patterns than to provide evidence
that some hypothesised pattern is missing (as is the case of our application on
the Progressive matrices). To some extent, this asymmetry would likely occur
regardless of the representation of eye movements as there will be potentially
always some aspect of the data that has been left unmodelled. Individual re-
searchers thus need to make informed decisions what representation of eye
movement data to use, and if possible, commit to the analysis in advance to
enable confirmatory analyses (de Groot, 2014). Exploratory analyses using dif-
ferent analytic approaches and eye movement representations can be then used
to complement, expand, or challenge the confirmatory findings and their the-
oretical underpinnings (Jaeger & Halliday, 1998) – especially if methods that
build upon different assumptions lead to different results. We hope that the
method we demonstrated in this article enriches the analysis toolbox for latent
inverse-Yarbus problems and will offer new insights, as we showed in our two
examples.

The k-means clustering method based on minimizing squared Euclidean
distances was chosen based on purely pragmatic reasons. It may be thought
that the k-means is not the most appropriate method for clustering transition
matrices, as it corresponds to the simplest form of mixture model for multivari-
ate normal data - whereas transition matrices are essentially multivariate vectors
of probability simplicia. Furthermore, the selection of the number of retained
clusters with scree plots is somewhat arbitrary, and the k-means assumes that
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the groups are of equal size, leading to a bias (and potentially incorrect clas-
sification) if that is not the case. These limitations can be tackled with more
advanced modeling, either by specifying a full (hidden) Markov model and use
clustering techniques on them (Chuk, Chan, & Hsiao, 2017; Chuk, Crookes,
et al., 2017), modeling the data as mixtures of categorical time-series where the
transition matrices can be thought of as collections of multinomial variables
(Pamminger & Frühwirth-Schnatter, 2010), or mixture modeling of even more
complex time-series models (e.g., Berchtold & Raftery, 2002). Whereas either
of these methods would probably do more justice to the data, we believe that
simpler methods such as the k-means might be useful. Computing transition
matrices is a simple task and the k-means is implemented as a basic algorithm
in most of the statistical software, can be run without extensive modelling ex-
perience and knowledge, and thus is widely available to all researchers. Thus,
the method we proposed can prove to be a simple alternative to assess hypothe-
ses about qualitatively different groups of scanpaths, or explore whether the
data set comprises of homogeneous eye movements patterns. Furthermore,
the method is able to capture the patterns on single item basis, which we have
also shown using simulations. This enables us to potentially investigate within-
person variability in the cluster assignment (e.g., due to effects of learning).
Further, even within the simple approach of k-means, there may be possible
important improvements, such as using clustering based on different distance
measures, different criteria for selection of the number of clusters (e.g., Tibshi-
rani, Walther, & Hastie, 2001), or regularizedk-means ork-means with variable
selection to tackle the dimensionality of the data and identifying features im-
portant for detecting differences between the clusters (e.g., Chormunge & Jena,
2018; Sun, Wang, Fang, & others, 2012).

While the method’s advantages perhaps facilitate its use in wide range of
application, it provides only limited options for modeling the eye movement
data in more flexible manner. In particular, we cannot fix certain parameters
to balance over-fitting and under-fitting, nor can we take into account hier-
archical structure of the data (i.e., participant and item characteristics). This
limitation proved to be important in our Mastermind example, where the non-
systematic, top to bottom strategy should more or less exhibit similar pattern
across all items, whereas the systematic strategies should exhibit different pat-
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terns depending on the structure of the feedback. This is why we limited our
example to only four items where the systematic strategy should elicit the same
pattern. We could partially solve the problem by recoding AOIs on some items
to conform to the same expected transition matrix, but it would not solve the
problem in general. On the other hand, more flexible approaches to modeling
the transition patterns would enable us to fix the strategies across items for one
cluster, but let vary the strategies across items for another. Furthermore, more
advanced modeling techniques could be used to identify or extend models of
response behavior that assume latent states of different cognitive processes (e.g.,
Dutilh, Wagenmakers, Visser, & van der Maas, 2011; Molenaar, Oberski, Ver-
munt, & De Boeck, 2016; van Maanen, Taatgen, van Vugt, Borst, & Mehlhorn,
2015), some of which were partially motivated by the results of eye-tracking
studies on cognitive tasks (Molenaar & de Boeck, 2018). However, we believe
that even simple methods such as the method proposed in this article provides
new ways to analyse data and derive new hypotheses, as well as think about
novel directions of the eye-tracking applications.

Open Practices Statement
The data and analysis code are openly available at osf.io/wvzs9/. All analy-
ses are exploratory and not preregistered.

https://osf.io/wvzs9/
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It’s a good run, but it’s a poor run, if you
know what I mean?

–Michael Owen

Chapter 4

Hidden Markov Models of
Evidence Accumulation in

Speeded Decision Tasks

This chapter is published as Kucharský, Š., Tran, N.-H., Veldkamp, K., Raij-
makers, M., and Visser, I. (2021). Hidden Markov models of evidence accumu-
lation in speeded decision tasks. Computational Brain & Behavior, 4, 416–441.
doi: 10.1007/s42113-021-00115-0
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Abstract
Speeded decision tasks are usually modeled within the evidence accumulation frame-

work, enabling inferences on latent cognitive parameters, and capturing dependencies
between the observed response times and accuracy. An example is the speed-accuracy
trade-off, where people sacrifice speed for accuracy (or vice versa). Different views on
this phenomenon lead to the idea that participants may not be able to control this
trade-off on a continuum, but rather switch between distinct states (Dutilh et al., 2011).

Hidden Markov models are used to account for switching between distinct states.
However, combining evidence accumulation models with a hidden Markov structure
is a challenging problem, as evidence accumulation models typically come with iden-
tification and computational issues that make them challenging on their own. Thus,
an integration of hidden Markov models with evidence accumulation models has still
remained elusive, even though such models would allow researchers to to capture po-
tential dependencies between response times and accuracy within the states, while con-
comitantly capturing different behavioral modes during cognitive processing.

This article presents a model that uses an evidence accumulation model as part
of a hidden Markov structure. This model is considered as a proof of principle that
evidence accumulation models can be combined with Markov switching models. As
such, the article considers a very simple case of a simplified Linear Ballistic Accumula-
tion. An extensive simulation study was conducted to validate the model’s implemen-
tation according to principles of robust Bayesian workflow. Example reanalysis of data
from Dutilh et al. (2011) demonstrates the application of the new model. The article
concludes with limitations and future extensions or alternatives to the model and its
application.

4.1 Introduction

Evidence accumulationmodels (EAMs) have become widely pop-
ular for explaining the generative process of response times and response
accuracy in elementary cognitive tasks (N. Evans & Wagenmakers, 2019).

The strength of EAMs is their ability to accurately describe the speed-accuracy
trade-off in speeded decision paradigms. The speed-accuracy trade-off is the co-
nundrum that typically occurs when participants are instructed to make faster
decisions, thereby increasing their proportion of errors (Bogacz, Wagenmakers,
Forstmann, & Nieuwenhuis, 2010; Luce, 1991; Wickelgren, 1977). The trade-off
implies that in some situations, people can be slow and accurate, whereas fast
and inaccurate in other situations. The dependency between response times
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and responses generally frustrates interpretation of response time and accuracy
at face value. EAMs aim to capture and explain this dependency between re-
sponse times and accuracy, and enable inference on the latent cognitive con-
structs and a mechanistic explanation of the observed response time and accu-
racy. Thus, such analyses often enable us to tell, for example, whether slowing
down is caused by increased response caution, increased difficulty or decreased
ability of the respondent (N. Evans & Wagenmakers, 2019; van der Maas et al.,
2011).

The traditional view of the speed-accuracy trade-off is that of a continu-
ous function. That is, people are able to control their responses on the entire
continuum from “slow and accurate” to “fast and inaccurate”. This is an in-
trinsic assumption of EAMs which makes it possible to manipulate parameters
associated with “response caution” to make more or less accurate (on average)
decisions by slower or faster (on average) responding. Under such a view, it is in
principle possible to hold average accuracy to any value between a chance per-
formance and a maximum possible accuracy (often near 100%), by adjusting
how fast one needs to be.

An opposing view is that of a “discontinuity” hypothesis (Dutilh et al.,
2011), which states that people are not able to trade accuracy for response time
on a continuous function, but rather switch between different stable states.
The discontinuity hypothesis in speeded decision-making is strongly associ-
ated with thinking about two particular response modes: a stimulus controlled
mode and a guessing mode (Ollman, 1966). Under the stimulus controlled
mode, one is maximizing response accuracy while sacrificing speed; whereas
under the guessing mode, choices are made at random for the sake of respond-
ing relatively fast. Hence, there are two modes of behavior under discontinuity
hypothesis. Such dual behavioral modes are present in many models of cogni-
tive processing (e.g., dual processing theory; J. Evans, 2008).

The discontinuity hypothesis has an increasing relevance in the speeded de-
cision paradigm because it is able to explain specific observed relationships be-
tween decision outcomes and reaction times that standard EAMs cannot ac-
count for (Dutilh et al., 2011; Molenaar et al., 2016; van Maanen, Couto, &
Lebreton, 2016). One of the most elaborate theoretical and empirical investi-
gations of the “discontinuity” hypothesis is the phase transition model for the
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speed-accuracy trade-off (Dutilh et al., 2011), which added several more predic-
tions regarding the dynamics of switching between the controlled and guess-
ing state. These phenomena can be modeled using hidden Markov models
(HMM, Visser, 2011; Visser, Raijmakers, & van der Maas, 2009). Dutilh et
al. (2011) used HMMs to model their data such that response time and accu-
racy are independent conditional on the state. Specifically, the model assumed
that the responses are generated from a categorical distribution and response
times from the lognormal distribution, independently of each other. Thus, the
speed-accuracy trade-off is described only by assuming one slow and accurate
state, and one fast and inaccurate state. However, at least under the controlled
state, evidence accumulation presumably takes place to generate the responses,
and so can lead to continuous speed-accuracy trade-off typical for EAMs, al-
though within a smaller range than assumed under the continuous hypothesis.
Thus, inference on the latent cognitive constructs given by the EAM might be
the preferred option, but is neglected under the current HMM implementa-
tions of the phase transition model. Combining EAM with HMM would thus
result in a model that is discontinuous on the larger scale (between state speed-
accuracy trade-off), and continuous on the smaller scale (within state speed-
accuracy trade-off), representing a third theoretical possibility beyond purely
continuous and purely discontinuous models (Dutilh et al., 2011).

Fitting an HMM combined with an EAM would enable researchers to test
specific predictions coming from the phase transition model as well as utiliz-
ing the strength of the EAM framework to account for the continuous speed-
accuracy trade-off within the states. The ability of EAMs to infer the latent cog-
nitive constructs liberates researchers from defining the states solely in terms of
their behavioral outcomes. For instance, instead of describing the controlled
state on the observed behavioral outcomes only (i.e., “slow and accurate”),
EAMs allows researchers to form a mechanistic explanation of the observed
behavioral outcomes using the latent cognitive constructs (i.e., “high response
caution and high drift rate”). Further, capturing residual dependency between
the observable variables conditionally on the latent states could improve per-
formance of an HMM in terms of classification accuracy.

However, fitting EAMs can be a challenging endeavor, especially for more
complicated models that allow for various sources of within and between trial
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variability, which often exhibit strong mimicry between different parameters,
and as such belong to the category of “sloppy models” (Apgar, Witmer, White,
& Tidor, 2010; Gutenkunst et al., 2007). More complicated models, such as
leaky competitor models, are not analytically tractable, and subject to highly
specific simulation-based fitting methods (N. Evans, 2019). Thus, combining
EAMs with HMMs, which themselves come with several computational (e.g.,
evaluation of the likelihood of the whole data sequence, Visser, 2011) and prac-
tical (e.g., label switching, Spezia, 2009) challenges, is highly demanding. The
only successful applications of HMMs in these tasks is in combination with
models that cannot capture possible residual dependencies, usually log-normal
models or shifted Wald models for response times (Dutilh et al., 2011; Mole-
naar et al., 2016; Timmers, 2019). Yet, even the supposedly simplest complete
model of response times and accuracy — the Linear Ballistic Accumulation
model (LBA, S. D. Brown & Heathcote, 2008) — has proven to be difficult
to combine with an HMM structure or even as a simple independent mixture
(Veldkamp, 2020); this may not come as a surprise considering the general iden-
tifiability issues of the standard LBA model (N. Evans, 2020).

Given the potential of complex cognitive models to suffer from computa-
tional issues, it is important to present evidence that the model implementation
is correct and that the procedure used to fit the model on realistic data (in terms
of plausible values but also size) indeed succeeds in recovering the information
that is used for inferences. The importance of validating models in terms of
practical applicability is ever more increasing with the growing heterogeneity of
approaches for fitting complex models, as well as modern approaches to build
custom models tailored to specific purposes.

This need is taken seriously in this article which implements and validates a
simple (constrained) version of the LBA model as part of an HMM. This model
makes it possible to capture the discontinuity of the speed-accuracy trade-off
by the HMM part, while concomitantly striving to capture the residual de-
pendency between speed and accuracy within the states. Further, the model
retains the fundamental inferential advantages of an EAM framework, but is
analytically tractable and stable enough to be used with standard, state-of-the-
art, modeling tools. To our knowledge, this is the first working combination of
an HMM and an EAM, and serves as a proof of concept.
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The structure of this article is as follows. First, the model is described in
conceptual terms to explain the core assumptions and mechanics. Second, a
simulation study summarises all steps that were followed when building and
validating the model in accordance with a robust Bayesian workflow (Lee et al.,
2019; Schad et al., 2019; Talts, Betancourt, Simpson, Vehtari, & Gelman, 2018).
The model validation is followed with an empirical example to demonstrate the
full inferential power of the model on experimental data. The article concludes
with discussion and future potential directions towards improving the model.

4.2 Model

The general architecture of the model for response times and choices that
we adopt here is the same as for the Linear Ballistic Accumulator (LBA,
S. D. Brown & Heathcote, 2008). In the standard LBA, each response option
is associated with its own evidence accumulator. Each accumulator rises lin-
early towards a threshold from a randomly drawn starting point, with its own
specific drift rate, drawn from some distribution (commonly a normal distri-
bution that is truncated at zero). The first accumulator that reaches its decision
threshold triggers the corresponding response. Figure 4.1 explains the basic me-
chanics of typical LBA model.

Although the LBA became a popular choice for analyzing response times
and accuracy, more recently evidence has surfaced suggesting practical identi-
fiability issues of the standard LBA model — especially when trying to quan-
tify differences in parameters such as decision boundary or drift rates between
experimental conditions (N. Evans, 2020). Given that HMMs can be viewed
as way to quantify differences between “conditions” (states) which themselves
need to be inferred from the data, (lack of) identifiability of the standard LBA
in combination with HMMs is a concern (especially in the upper bound of the
starting point Timmers, 2019; Veldkamp, 2020).

However, there exists a number of potential remedies to solve the identi-
fiability issue of the standard LBA. These remedies involve constraining the
LBA model in some way while retaining as much flexibility of the model as
possible to account for different patterns in the data, and to still allow infer-
ences on the most fundamental parts of the evidence accumulation decision
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Figure 4.1: Linear Ballistic Accumulator (S. D. Brown & Heathcote, 2008).
Each response outcome has an independent accumulator. For simplicity, the
plot shows only one accumulator. (a) starting point for each accumulator is
generated from Uniform distribution between zero and the upper bound of
the starting point. (b) accumulator is launched from the starting point and
with a drift rate that is generated from normal distribution with a mean drift
and standard deviation of drift rate. (c) decision is made based on which ac-
cumulator hits the decision boundary first. Final response time is the sum of
the decision time (the time it took the first accumulator reach the boundary)
and a non-decision time (a fixed time for encoding the stimuli and motoric re-
sponse).

process (e.g., speed of accumulation, response caution, etc). For example, a rel-
atively well established set of constraints is to ensure that the average drift rates
across accumulators are equal to some constant value (e.g. a scaling value of 1,
Donkin, Brown, Heathcote, & Wagenmakers, 2011; N. Evans, 2020; Visser &
Poessé, 2017). Such constraints may be accompanied by implementing equality
constraints on parameters such as the upper bound of the starting point or the
standard deviation of the drift rates. In the context of different conditions, even
more stringent (equality) constraints are possible, such as equating parameters
(such as drift rate for the “error” response) across conditions (N. Evans, 2020).

This article aims to provide a proof of concept that EAMs and HMMs can
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be combined into a single model. The present application simplifies the LBA
model to a bare minimum and acts as a sanity check – in case even very min-
imalist EAM models cannot be employed as part of a HMM model, there is
little reason to expect that more complex, complete and computationally de-
manding models of decision making will be more successful.

The bare minimum, simple instance of LBA is achieved in this article by
setting several constraints on the parameters. For practical reasons, we will re-
fer to this model as sLBA, a short for “simplified Linear Ballistic Accumula-
tor”. Most significantly, the model implemented in this article fixes all start-
ing points at zero, effectively removing the variability of the starting point. As
commonly done in the LBA, we constrain the drift rates to sum to unity. In
addition to that, the drift rates are assumed to have equal standard deviations
across accumulators. Full details on the model, its likelihood and identifiability
are described in Appendix 4.A, additional helpful derivations can be found in
Nakahara, Nakamura, and Hikosaka (2006). Figure 4.2 explains the model in
additional detail.

The simplification achieved by removing the variability of the starting point
makes the model coarsely similar to the LATER model (Linear Approach to
Threshold with Ergodic Rate, R. H. S. Carpenter, 1981; Noorani & Carpenter,
2016), with the difference that the current model explicitly evaluates the likeli-
hood of observing the first accumulator that reached the threshold according
to the general race equations (see Heathcote & Love, 2012), and contains addi-
tional parameters (such as non-decision time). Therefore, it enables researchers
to model accuracy in addition to response times as opposed to the LATER
model (see Ratcliff, 2001, for critique of LATER for inability to do so).

The constraints employed in this application greatly reduce the complexity
compared to the standard LBA model. Specifically, our model for responses
and response times on a two choice task contains the following parameters: the
average drift rate for the correct (ν1) and incorrect (ν2) responses, the standard
deviation of the drift rates (σ), the decision threshold (α), and the non-decision
time (τ ). The latter three parameters are equal for both accumulators.

The purpose of simplifying the LBA model is to employ it as a distribution
of response times and responses in an HMM. Specifically, the current model
assumes two latent states: A “controlled” state (s = 1) and a “guessing” state
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Figure 4.2: HMM combined with sLBA. Bottom panel: Latent controlled and
guessing states evolve as a Markov chain, with initial state probabilities π1 and
π2, and transition probabilities ρ12 and ρ21. Middle panel: Non-decision time
τ shifts the response times. Correct and incorrect responses launch an accu-
mulator (starting at 0), with a drift rate drawn from a truncated Normal distri-
bution with mean drift rate ν and a standard deviation σ. The plot shows the
average drift rates as thick arrows, and realisations of the random process as thin
lines to represent the randomness of the process. Accumulator that reaches the
decision boundaryα first launches corresponding response. Average drift rates
and decision boundary can differ between the states. Top panel: Under the
controlled state (left), the expected response times are larger than under the
guessing state (right), but the accuracy is higher (i.e., the decision boundary is
reached by the correct accumulator more often).
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(s = 2). These states evolve according to a Markov chain, which is character-
ized by the initial (π1 and π2) and transition state probabilities ρij , where the
first index i corresponds to the outgoing state and j corresponds to the incom-
ing state: For example, ρ12 is the probability that the participants switch from
the controlled state to the guessing state.

Traditionally, these states would be equipped by their own distribution of
response times and responses, possessing their own parameters. That is, we
could use the LBA model for each latent state of the HMM, and estimate the
drift rate for the correct responses for the first state ν(1)

1 , second state ν(2)
2 , and

similarly for all of the parameters. However, we further reduce the complexity
of the model by equating some parameters between states. Specifically, we as-
sume that the difference between the guessing state and the controlled state is
evoked by differences between average drift rates and decision thresholds. The
rest of the parameters are held equal across the states. Thus, equality constraints
σ(1) = σ(2) and τ (1) = τ (2) are used to further simplify the model.

Additionally, there are some notable considerations regarding the controlled
and guessing states, which will later help setting priors and preventing label
switching. Specifically, the controlled state has higher average drift rate for the
correct response than the guessing state (ν(1)

1 > ν
(2)
1 , and consequently ν(1)

2 <

ν
(2)
2 due to the sum-to-one constraint of the drift rates, see Appendix 4.A) at

the expense of having higher decision threshold (α(1) > α(2). Further, if the
second state truly is guessing, the drift rates under this state should be roughly
the same: ν(2)

1 ≈ ν
(2)
2 ≈ 0.5.

4.2.1 Implementation
We implemented the HMM and LBA model in a probabilistic modeling
language Stan (B. Carpenter et al., 2017); specifically, v2.24.0 release candi-
date of CmdStan (github.com/stan-dev/cmdstan/releases/tag/v2
.24.0-rc1, Stan Development Team, 2020). In this version of Stan, several
new functions were introduced that implement the forward algorithm for cal-
culating the log-likelihood of the data sequence, while marginalizing out the
latent state parameters (for easy introduction, see Visser, 2011), which makes
estimating HMM models in Stan much easier, computationally cheaper, and
less error-prone than before (which required manual coding of the forward al-

https://github.com/stan-dev/cmdstan/releases/tag/v2.24.0-rc1
https://github.com/stan-dev/cmdstan/releases/tag/v2.24.0-rc1
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gorithm). The sLBA distribution of response times and responses was custom
coded in the Stan language. We executed CmdStan from the statistical comput-
ing language R (R Core Team, 2020) using the R package cmdstanr (Gabry
& Češnovar, 2020). The code is available at github.com/Kucharssim/
hmm_slba.

4.2.2 Label switching
Finite mixture models and Hidden Markov models share the characteristic that
the likelihood of the models is typically invariant to the permutation of the la-
tent state labels (Jasra, Holmes, & Stephens, 2005; Spezia, 2009). This means
that fitting the model can result in different estimates, depending on towards
which state configurations the fitting procedure leads to. In the current context
of guessing and controlled state, it is not possible on the basis of the model like-
lihood alone to state whether model 1 should be controlled or guessing state and
vice versa – both options lead to the same likelihood value. There are several
perspectives on dealing with potential label switching, perspectives that differ
in terms of what types of applications and inferential paradigms one follows.
For example, in maximum likelihood paradigm, label switching is not a severe
problem as the analyst can simply relabel the states after the model has been
fitted, based on how the parameter estimates can be interpreted. In Bayesian
framework (especially with MCMC), the problem is more complicated as the
label switching can manifest in different ways, and can also depend on the sam-
pler (and its settings) one uses to obtain the estimates of the entire posterior
distribution. Common remedies of label switching are, for example 1) Change
the model so that emission distributions under each state are uniquely identi-
fied, 2) establish parameter inequalities which leads to identifying the labels, 3)
use of informative priors that lead to better identification of the apriori con-
straints, 4) some form of state relabeling of the posterior samples, among oth-
ers. Usually, various remedies are combined together as the solutions do not
work in generality for all possible mixture problems and applications.

In the current application, we heavily rely on approach 3), whereby spec-
ifying informative priors leads to soft identification of the state labels, i.e., as-
sociating slow and accurate responding with a (controlled) state 1 and fast and
inaccurate responding with a (guessing) state 2. However, it is important that

https://github.com/Kucharssim/hmm_slba
https://github.com/Kucharssim/hmm_slba
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even which informative priors, one is only increasing the apriori probability of
some state configuration, but does not render other configurations impossible.
In fact, the other state configurations are still valid modes of the joint posterior
space, albeit less plausible according to the prior specification. In some appli-
cations (estimating marginal likelihood in order to conduct model compari-
son; Frühwirth-Schnatter, 2004), it is actually desirable to make sure that the
sampler is switching between state labeling freely, to ensure that the MCMC
sampling efficiently explores the joint posterior in its entirety. In purely estima-
tion settings (which is the case of this article which is not concerned by model
comparison), one does not need to ensure that all valid modes of the poste-
riors are explored efficiently, as long as the main mode is explored well, which,
among others, entails checking whether the labels did not switch, either within-
or between- the MCMC chains.

4.3 Simulation study
In order to investigate the quality of inferences we draw from the model, a sim-
ulation study was conducted. Specifically, we conducted the simulation in ac-
cordance with a principled Bayesian workflow (Schad et al., 2019). The simu-
lation study consists of 1) prior predictive checks to identify priors that reflect
our domain specific knowledge, 2) a computational faithfulness check to test
correct posterior distribution approximation, 3) model sensitivity analysis to
investigate how well the estimated posterior mean of parameter matches the
true data generating value, and the amount of updating (i.e., how much are the
parameters informed by the data). Additionally, as is the case in classical model
validation simulation, we report standard parameter recovery results, including
coverage probabilities of credible intervals.

4.3.1 Prior predictives

Choosing prior distributions is an integral part of the Bayesian model-building
process because the prior should reflect theoretical assumptions and cumula-
tive knowledge about the parameter space as well as aid model convergence
(Gershman, 2016; Vanpaemel, 2011). Ideally, the priors should be informed and
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constrained by a large collection of previous studies (Tran, van Maanen, Heath-
cote, & Matzke, 2020; Zwet & Gelman, 2022) to yield more efficient sampling
and plausible estimates. In the current study, we selected prior distributions to
constrain parameter values to reasonable regions of the parameter space (e.g.,
non-decision time must be positive, therefore we used an exponential distribu-
tion) and to nudge the model towards convergence. Concomitantly, our prior
distributions were informed by the large collection of literature on evidence ac-
cumulation models applied to lexical and perceptual decision tasks (Tran et al.,
2020). Interested readers who want to apply our models to different experi-
mental tasks or non-standard populations, might want to consult the corpus
of literature specific to the application to adjust the prior distributions.

To place priors that reflect our expectations about data from the tasks to
which the model will be applied, we conducted prior predictive simulations. In
particular, we first set out to generate 1,000 data sets each of 200 trials, which
is generally a lower bar for running speeded decision tasks. Then, the following
expectations of the generated data are defined, specified in terms of summary
statistics across the 200 observations per data set. Throughout, response times
are measured and reported in seconds. In case response times are measured in
different units, the priors should be re-scaled appropriately.

Latent state distribution.

First, we expect that the number of trials participants spend in one or another
state will be relatively even, and that it is very rare that participants would com-
plete all 200 trials in a single state. The evenness is achieved by composing a
symmetric initial state probabilities vector π and a symmetric transition ma-

trix P =

[
ρ1

ρ2

]
. Further, we assume that the states are relatively sticky, there-

fore there will be a tendency to stay in the current state rather than switching
to another state. Specifically, the average run length is expected to be approxi-
mately between 5–10, and that in at least 50% of the simulations the proportion
of the trials under the controlled state ranges between 30% to 70%.
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We chose the following priors

π ∼ Dirichlet(5, 5)
ρ1 ∼ Dirichet(8, 2)
ρ2 ∼ Dirichet(2, 8).

The initial state probabilities are assigned a symmetric Dirichlet prior. The
hyperparameters slightly favor probabilities closer to 0.5. Usually, the initial
state probabilities are not the focus of inference as they depend mostly on just
the first trial. Thus, slightly informative priors were chosen to help the model
to converge. For the transition probabilities, Dirichlet priors that favor “sticky”
states were chosen. Specifically, the mean probability of staying under the cur-
rent state is 0.8. There is still considerable uncertainty about how sticky the two
states are: 90% of the prior mass for the probability of persisting in the current
state lies between 0.63 and 0.94.

The results of the prior predictive simulation showed that the median of
the average run length is 6.25, IQR[4.35, 9.524]. The distribution of the average
run length is positively skewed. Although it could be expected in many experi-
ments that run lengths could be higher, the priors would have to be much more
informative (pushing the probability of staying in a current state closer to one)
than the current settings. However, that would give only a very narrow range
of the values used for validating the models. Therefore, the current setting of
the prior is a compromise between prior expectations about the data and the
need to validate the model on a wider range of parameter values. Regarding
the percentage of trials in the controlled state, the distribution over the 1,000
simulations had a median of 0.51, IQR[0.35, 0.67].

Response and response time distributions.

We expect that the distributions of the responses will be the following. Under
the controlled state, the proportion of correct responses is well above chance;
we assume that under the controlled state, there is almost zero probability that a
person would have accuracy smaller than 50%, and that it is possible to achieve
relatively high accuracy on average (≈75%). Under the guessing state, we as-
sume that the average accuracy is exactly 50%.
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For the distributions of the response times, we have the following expecta-
tions. First, the response times under the controlled state are on average slower
than responses under the guessing state. Second, the responses under the guess-
ing state are relatively rapid: responses in simple perceptual decision tasks can
be faster than 1 sec on average. Third, the majority of response times does not
exceed 5 sec (Tran et al., 2020).

Based on these considerations and prior predictive simulations, the follow-
ing prior specification for the LBA parameters were identified as suitable:

ν(1) ∼ Dirichlet(14, 6)
ν(2) ∼ Dirichlet(10, 10)
α(1) ∼ Gaussian(0.5, 0.1)(0,∞)

α(2) ∼ Gaussian(0.25, 0.05)(0,∞)

σ ∼ Gaussian(0.4, 0.1)(0,∞)

τ ∼ Exponential(5)

Figure 4.3 and Table 4.1 summarise the prior predictive distribution of the
accuracy (proportion of correct answers) under the two states separately. As
desired, the accuracy under the controlled state is well above chance, whereas
under the guessing state it clusters around 50%. There is considerable variability
under both states, leaving the possibility for the model to learn from the data.

Figure 4.3: Prior predictive distribution of the response accuracy (proportion
of correct answers).
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Quantile

State Mean SD 2.5% 25% 50% 75% 97.5%

Controlled 0.73 0.12 0.48 0.65 0.73 0.81 0.96
Guessing 0.50 0.16 0.21 0.39 0.50 0.60 0.81

Table 4.1: Descriptives of the prior predictive distribution of the response ac-
curacy (proportion of correct answers).

Quantile

State Response Mean SD 2.5% 25% 50% 75% 97.5%

Controlled Correct 0.92 0.28 0.49 0.73 0.87 1.03 1.57
Controlled Error 1.09 0.34 0.59 0.87 1.03 1.26 1.82
Guessing Correct 0.60 0.24 0.28 0.44 0.55 0.70 1.19
Guessing Error 0.60 0.23 0.27 0.44 0.55 0.70 1.18

Table 4.2: Descriptives of the prior predictive distribution of the average re-
sponse times.

Figure 4.4 and Table 4.2 summarise the prior predictive distributions of the
average response times for correct and incorrect responses under the two states
separately. As desired, the average response times are slower under the con-
trolled state than under the guessing state. The majority of the average response
times under the guessing state are below 1 sec, whereas under the controlled
state cluster around 1 sec. There are no large differences between response times
for correct and incorrect responses under the two states separately, although the
average response times for incorrect responses under the controlled state show
higher variance than for the correct responses. However, this phenomenon
might be caused by the fact that there are more correct responses than incorrect
responses under the guessing state, resulting in higher standard errors for the
averages of the incorrect responses.

The prior distributions specified above may seem extremely informative,
introducing “subjective” bias to the analysis. However, we believe the prior
distributions are justified by our prior predictive simulations and based on cu-
mulative characterizations of psychological processes underlying a lexical deci-
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Figure 4.4: Prior predictive distribution of the average response times.

sion and a perceptual decision task of EAMs (Tran et al., 2020). Further, prior
distributions may be also regarded as constraining the parameter space to plau-
sible values (Kennedy, Simpson, & Gelman, 2019; Tran et al., 2020; Vanpaemel,
2011), similarly as a traditional statistician would decide on ranges of parame-
ters for a simulation study. In the current study, the prior distributions actually
cover slightly more volume of the parameter space than is typical in simulation
studies of similar type (e.g., Donkin et al., 2011; Visser & Poessé, 2017). Lastly,
priors on the parameters in both states (e.g.,α(1) andα(2)) are used to primarily
separate the latent states from each other, and associate the first state with the
controlled state (and conversely the second state with the guessing state). Using
informed priors in such occasions prevents label switching problems, and gen-
tly nudges the model towards convergence.1 However, the prior specification

1There are other techniques to identify states and prevent label switching (Jasra et al., 2005).
For example, a common approach is to put an order constraint on the model parameters, for
example, α(1) < α(2), by using a transformation α2 := α1 + exp(θ). Such a “hard” or-
der restriction is effective in dealing with label switching, but makes it harder to reason about
the prior specification. Further, “hard” order restrictions can hinder computing normalizing
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does not ensure that the labels do not switch at all. When fitting the models,
we performed additional checks using the posterior samples to check whether
the labels indeed converged to the modes of the posteriors we intended.

4.3.2 Computational faithfulness
There are many ways in which model implementation can fail, especially in case
of Bayesian models requiring MCMC. Possible problems might arise due to er-
ror in specification of the likelihood (or just insufficiently robust implementa-
tion), the use of difficult parameterizations, or a simple coding error. Another
problem may arise when the model combined with the priors and the data re-
sult in a very complex parameter space for the MCMC algorithm to navigate,
which may lead to inefficient exploration of the target posterior distribution.
Such issues can lead to biased estimates, underestimating the uncertainty of
parameters, or simply wrong inferences.

For the endless possibilities in which model implementation can fail, there
was a lot of recent advancement in techniques that aim to check for compu-
tational faithfulness of a model — in the context of the Bayesian framework,
this means testing whether the proposed MCMC procedure yields valid ap-
proximations of the posterior distributions (Schad et al., 2019). One estab-
lished technique is Simulation-based calibration (SBC, Talts et al., 2018). As
the model that we propose in this article is definitely suspect for computational
problems, we use SBC to check our model implementation (although it could
be argued that such checks should be done by default for non-standard mod-
els at least). Since these checks are not yet the standard in cognitive modeling
literature (Schad et al., 2019), we briefly summarise the rationale behind SBC
here, although the interested reader should refer to excellent articles by Talts et
al. (2018) and Schad et al. (2019).

To check whether the method used for approximating the posterior distri-
bution π(θ|ỹ) is correct, the following steps can be done: (1) draw from the
prior distribution θ̃ ∼ π(θ̃), (2) draw a data set from the model using the gen-
erated values of the parameters, ỹ ∼ π(ỹ|θ̃), and (3) fit the model on the gen-
erated data to obtain the posterior distribution π(θ|ỹ). The draws from such

constants, in case one is eager to quantify the marginal likelihood (evidence) of the model
(Frühwirth-Schnatter, 2004, 2019).
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an obtained distribution, across many repeated replications of this procedure,
should give back the prior distribution of the parameters π(θ). In short, SBC
builds on the fact that (Talts et al., 2018)

π(θ) =

∫ ∫
π(θ|ỹ)π(ỹ|θ̃)π(θ̃)dỹdθ̃, (4.1)

which means that we can recover analytically the prior distribution on model
parameters π(θ) by averaging the posterior distribution π(θ|ỹ) weighted by
the prior predictive distribution

∫
π(ỹ|θ̃)π(θ̃)dθ̃. In order to check whether

the prior distribution is indeed recovered, for each repetition, we compare the
draw from the prior (that generated the data) to the samples from the posterior,
and count the posterior samples that are smaller than the draw from the prior.
If these two distributions are the same, every rank (i.e., the count of posterior
samples that are smaller than the generating parameter value) would be equally
likely – yielding an approximately uniformly distributed rank statistic (Talts et
al., 2018).

Using the already created ensemble of 1,000 prior predictive data sets in
section 4.3.1, each of the data sets was fitted using Hamiltonian Monte Carlo
supplied by Stan (B. Carpenter et al., 2017). Due to computational constraints
(typical run of a model averages roughly about 500 sampling iterations per
minute on Apple’s MacBook Air edition 2017), each model ran only with one
chain for 500 warmup and 1,000 sampling iterations. Starting points were gen-
erated by drawing independent samples from the priors. In case the model la-
bel switched, the model was reran (at maximum five times). Model switch-
ing was detected by comparing the true (generative) states to the estimated
states (identified using modal assignment based on mean state probabilities
using the forward-backward algorithm). This resulted in non-label switching
MCMC samples for 945 data sets out of the total 1,000. Since only 783 repe-
titions achieved acceptable values of the (split-half) Gelman-Rubin R̂ statistic
(Gelman & Rubin, 1992) between 0.99 and 1.01 for all of the parameters, we
selected several data sets at random from non-converged cases and refitted them
with 4 chains, 1,000 warmup and 1,000 sampling iterations. The new model fits
had good R̂ for all parameters, suggesting that the unsatisfactory convergence
diagnostics were a consequence of the small number of MCMC iterations dur-
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Figure 4.5: Simulation based calibration: Histogram of the rank statistic. The
dashed lines correspond to the lower and upper limits of the 95% interval under
the null hypothesis that the rank statistic is uniformly distributed.
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ing the simulation. We excluded from the results only the repetitions that label
switched, but kept those that did not yield satisfactory convergence diagnos-
tics. Because the SBC rank statistic is sensitive to potential autocorrelation of
the chain, the posterior samples were thinned by a factor of 50 — leading to the
rank statistic ranging between 0 and 20.

Figure 4.5 shows the histogram of the SBC rank statistic for each of the
parameter separately. Figure 4.6 shows the difference between the cumulative
distribution and the theoretical cumulative distribution of a uniformly dis-
tributed variable (Talts et al., 2018).

The results show that none of the parameters exhibit typical patterns present
in case that the posterior approximation is under-dispersed or over-dispersed
compared to the true posterior (which would manifest as a ∪ or ∩ shape of the
rank distribution, Talts et al., 2018). Further, the distribution of rank statis-
tics for most of the parameters seem consistent with a uniform distribution,
suggesting that the posterior approximation is very close to the true posterior.
However, three parameters seem potentially problematic: the rank statistic for
α(1), α(2), and ν

(2)
1 show an excess of frequencies at 20 and 0, respectively, sug-

gesting that α(1) approximation could be underestimating the true posterior,
whereas α(2) and ν

(2)
1 approximations could be overestimating the true poste-

rior. However, this observation could also arise if the thinning was not efficient
to reduce the autocorrelation of the chain (autocorrelation can result in excess
of ranks at the edge of the distribution Talts et al., 2018). Additionally Fig-
ure 4.6 reveals that the rank distribution for ρ22 also potentially deviates from
the uniform distribution. However, this deviance is not associated with any
typical problem in posterior approximations, lacking a meaningful interpreta-
tion.

SBC gave us assurance that our model is capable of approximating the pos-
terior distribution for most of the parameters. Three potentially problematic
parameters remain, although the deviance from the expected results it small.
Potential explanations for these deviances could be the constraints to resolve
label switching (which could cause the truncation of the parameters for one
state near values for the same parameter from the other state), or unsuccess-
ful reduction of the auto correlations of the MCMC chains (which could be
solved by running the procedure for more iterations and use higher thinning.)
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Figure 4.6: Simulation based calibration: ECDF of the rank statistic minus
the ECDF of a uniformly distributed variable. The shaded area corresponds to
the 95% interval under the null hypothesis that the rank statistic is uniformly
distributed.
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4.3.3 Model sensitivity

Next, the goal was to investigate for each parameter, (1) how well the posterior
mean matches the true data generating value of the parameter, and (2) how
much uncertainty is removed when updating the prior to the posterior. This
is useful to investigate the bias-variance trade-off for each parameter, and to
adjust our expectations regarding how much we can learn about parameters,
given a data set of a specified size (in this simulation, number of trials = 200).

To answer (1), posterior z-scores for each parameter are defined as:

z =
µposterior − θ̃

σposterior
, (4.2)

that is, the difference between the posterior mean and the true parameter value
is divided by the posterior standard deviation. The posterior z-scores tell us
how far the posterior expectation is from the true value, relative to the poste-
rior uncertainty. The distribution of the posterior z-scores should have a mean
close to 0 (if not, the posterior expectation is a biased estimator).

To answer (2), posterior contraction for each parameter is defined as:

contraction = 1−
σ2

posterior

σ2
prior

. (4.3)

If the posterior contraction approaches one, the variance of the posterior in
negligible compared to the variance of the prior, indicating that the model learned
a lot about the parameter of interest. Conversely, if the posterior contraction
is close to zero, there is not much information in the data about the parameter,
resulting in the inability to reduce the prior uncertainty.

These two variables are plotted against each other in a scatter plot, which
provides useful diagnostic insights (Schad et al., 2019). Specifically, for each
parameter, and each simulation which did not label switch, the posterior z-
scores and posterior contraction are plotted on the y-axis and x-axis, respec-
tively. Figure 4.7 shows the diagnostic plot for the nine parameters with equal
axes between them to enable comparison between parameters.

All of the parameters cluster around z-scores of 0 (dashed horizontal line),
suggesting that neither of the parameters exhibits systematic bias. However,
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Figure 4.7: Model sensitivity plot for all nine parameters. Blue diamond shapes
depict the means of the distributions.
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there are large differences between parameters in terms of posterior contrac-
tion. The most contraction is present for the non-decision time τ , followed by
the rest of the LBA parameters. We could expect that the contraction would
increase with the number of trials. The worst results concern the initial state
probability π1: The posterior contraction basically stays at zero. However, this
is expected as the initial state probability is affected mostly by just the first trial,
and as such, there is not much information in the data about it. Increasing
the number of trials would not help to identify this parameter, only repeated
experiments would.

In general, the sensitivity analyses suggest that the amount of learning about
the parameters of interest could be satisfactory given the typical experimental
designs (our simulation was based on 200 trials per experiment, whereas typical
decision tasks experiments could count multiples of that number), especially
for the LBA parameters.

4.3.4 Parameter recovery and coverage probability
Traditional simulation studies aim to validate statistical models and assess the
quality of a point estimator of a given parameter of interest. Additionally, such
simulations are accompanied by assessment procedures. This section adheres
to this tradition: for each of the parameters (that are not a linear combination
of others) we report the standard “parameter recovery” results.

The simulation was done using two estimation techniques: the maximum
a posteriori (MAP) estimation, and the posterior expectation (i.e., the mean of
the posterior distribution). MAP is useful in situations where researcher needs
to obtain estimates quickly, and does not need to express the uncertainty in the
estimates. As the rest of the article focuses on full Bayesian inference, MAP
results are presented only in the Supplementary Information. Pearson’s cor-
relation coefficient between the estimated parameter value and its true values
serves as a rough indicator of parameter recovery. High correlations indicate
that the model is able to pick up variation in the parameter. Additionally, scat-
ter plots visualizing the relationship between the true and estimated parameter
values show the precise relationship between the true and estimated values of
the parameters.

We also investigate the coverage performance of the central credible inter-
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vals. For each parameter, the frequency with which 50% and 80% central cred-
ible intervals contain the true data generating value was recorded. The con-
fidence levels are relatively low compared to traditionally reported values, be-
cause we have only 1,000 MCMC samples per parameter due to computational
constraints, which results in low precision in the tails of the posterior distribu-
tions (i.e., the tail effective sample size was generally too low).

Posterior expectation

Figure 4.8 shows the scatter plot between the true (x-axis) and estimated (y-
axis) values (i.e., means of the posteriors) for the nine free parameters in the
model: the drift for the correct choice under the controlled state (ν(1)

1 ), the drift
for the correct choice under the guessing state (ν(2)

1 ), the standard deviation
of drifts (σ), the decision boundary under the controlled (α(1)) and guessing
(α(2)) state, the non-decision time (τ ), the initial probability of the controlled
state (π1), the probability of dwelling in the controlled (ρ11) and the guessing
(ρ22) state. The correlations for the LBA parameters range from high (r =

0.77 for ν(1)
1 ) to nearly perfect (r = 0.99 for τ ) and the point lie close to the

identity line, suggesting good recovery of the LBA parameters. An exception is
the parameter σ, which shows a pattern of underestimating the true values, if
the true value is relatively high.

As for the parameters characterizing the evolution of the latent states, the
recovery of the initial state probability is sub optimal (r = 0.22). This is ex-
pected, as there is not much information in the data about this parameter (it
mostly depends on the state of the first trial), and so it is highly dependent on
the prior. This parameter is not to be interpreted, however, unless the model
is fitted on repeated trial sequences (so that there are more “first” trial observa-
tions). The recovery of the two “dwelling” probabilities are satisfactory.

Coverage of the credible intervals

Using the MCMC samples, we computed the 50% and 80% central credible
intervals for each parameter under each fitted model (that did not label switch),
and checked whether the true value of the parameter lies within that interval.
Table 4.3 shows that the relative frequencies with which the CIs cover the true
value is very close to the nominal value of the confidence level. Thus, we did not
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Figure 4.8: Parameter recovery using posterior expectation. Correlation plots
between the true values (x-axis) and the estimated values (y-axis). The slope
line shows the identity function.



178 CHAPTER 4. HMM EAM

50% CI Coverage 80% CI Coverage

ν
(1)
1 0.52 [0.49, 0.55] 0.79 [0.76, 0.82]
ν
(2)
1 0.48 [0.45, 0.51] 0.79 [0.76, 0.82]
σ 0.51 [0.48, 0.54] 0.82 [0.80, 0.85]
α(1) 0.49 [0.45, 0.52] 0.78 [0.76, 0.81]
α(2) 0.51 [0.48, 0.54] 0.81 [0.79, 0.84]
τ 0.50 [0.47, 0.53] 0.81 [0.79, 0.84]

π1 0.49 [0.45, 0.52] 0.80 [0.78, 0.83]
ρ11 0.52 [0.49, 0.56] 0.83 [0.81, 0.86]
ρ22 0.51 [0.48, 0.54] 0.80 [0.77, 0.82]

Table 4.3: The relative frequency with which 50% and 80% credible interval
contained the true parameter value. The numbers in the brackets correspond
to the 95% Jeffreys credible interval for binomial proportion (L. D. Brown et
al., 2001).

observe that the credible intervals would be poorly calibrated with respect to
their frequentist properties. It is important to keep in mind, though, that this
is not a proof of well calibrated CIs in general (e.g., for all possible parameter
values and all confidence levels).

4.3.5 Conclusion
We followed general recommendations for a principled Bayesian workflow for
building and validating bespoke cognitive models (Kennedy et al., 2019; Schad
et al., 2019; Tran et al., 2020). Knowledge about data typical in two-choice
speeded decision tasks was used to define the prior distributions on the model
parameters. The MCMC procedure yielded accurate approximations of the
posterior distributions using simulation-based calibration. SBC further yielded
good results except for three parameters for which slight bias could have poten-
tially occurred. Model sensitivity analysis revealed that the model is able to learn
about the parameters of interest while not introducing substantial systematic
bias to the estimates. The standard parameter recovery resulted in acceptable
results. Further, the 50% and 80% credible intervals had coverage probabilities
at their nominal levels. Results of the simulation study hence suggest that fur-
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ther work on improving the model is not absolutely necessary before applying
it to real data.

4.4 Application: Dutilh et al. (2011) study
This section demonstrates the use of our model on a real data set from an exper-
iment reported by Dutilh et al. (2011). In this experiment, 11 participants took
part in a lexical-decision task (participants A–C in Experiment 1a and partici-
pants D–G in Experiment 1bL) and perceptual decision task (participants H–K
in Experiment 1bV). Despite the fact that the experiments are based on a differ-
ent modality, the analysis stayed the same as the data have the same structure
regarding the application of the HMM. Specifically, participants were asked to
give answers on a two-choice task with varying degrees of pay-off for response
time and response accuracy: the sum of the pay-off was a given constant, but
the difference between them varied, thus leading to trials preferring accuracy
(high reward for getting the answer correctly) to trials preferring speed (high
reward for responding fast). Dutilh et al. (2011) originally fitted a two state
HMMs where the emission distribution for the response times was assumed
log-normal, and the distribution for the responses a categorical (i.e., assuming
independence of response times and accuracy after conditioning on the state).
Here, the EAM HMM model is applied to each of the participants separately,
and the model fit is assessed using posterior predictives.

4.4.1 Method

We fitted each participants’ data using the model described in section 4.2 and
priors developed in section 4.3.1. Specifically, for each participant, we ran eight
MCMC chains with a 1,000 warmup and 1,000 sampling iterations using Stan
(B. Carpenter et al., 2017), with the tuning parameter δadapt increased to 0.9.
Starting points were randomly generated from the prior. Some initial values
yielded likelihoods that were too low, leading to failure of the chain initializa-
tion. If seven out of the eight chains failed to initialize, the model was reran.
If at least two chains managed to run, we inspected the Gelman-Rubin poten-
tial scale reduction factor R̂ (Gelman & Rubin, 1992), traceplots of the MCMC
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chains, and parameter estimates, to detect possible label switching. Label switch-
ing was identified if ᾱ(1) < ᾱ(2) or ν̄(1)

1 < ν̄
(2)
2 (the two conditions coincided

in 100% of the cases). If label switching occurred, we reran the eight chains.
Once we were able to run at least two chains without label switching, we pro-
ceeded to fit data from another participant.

4.4.2 Results
Model fit for two participants needed to be run three times and for one par-
ticipant five times due to seven chains failing to initialize. Further, models
needed to be rerun twice for one participant and three times for four partic-
ipants due to between chain label switching. The final fits for two participants
ended with two valid chains, for six participants with three valid chains, and for
three participants with four valid chains. Therefore, the number of posterior
samples used for inference ranged between 2,000 and 4,000. None of the mod-
els yielded divergent transitions. All R̂ statistics range between 0.99 and 1.01,
and traceplots of the MCMC chains show typical caterpillar shape without a
visible drift. Thus, the final model fits do not exhibit convergence issues.

For each participant, we performed several fit diagnostics, to assess whether
(and how) the model misfits the data. In the interest of brevity, results for only
the first participant from each of the sub-experiments are shown (i.e., partici-
pant A, participant D, and participant H). The rest of the results can be found
online atgithub.com/Kucharssim/hmm_slba/tree/master/figures.

First, we simulated the posterior predictives for response times and accu-
racy and plotted them against the observed data. Figure 4.9 shows the pos-
terior predictive distribution for the response times summarised as 80% and
50% quantiles of the posterior predictive distribution for each trial (light red
and dark red, respectively), and the median of the posterior predictive distribu-
tion (red line). The black line shows the observed response times at a particular
trial. Figure 4.10 shows the posterior predictive distribution for the responses.
Specifically, the red line shows the predicted probability of a correct response
for a particular trial, whereas the black dots points the observed responses. For
ease of the visual comparison, the observed responses were smoothed by cal-
culating their moving average with a window of 10 trials, which is shown as a
black line.

https://github.com/Kucharssim/hmm_slba/tree/master/figures
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Figure 4.9: Posterior predictives for the response times for three participants.
Only the first 300 trials are shown.
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Figure 4.10: Posterior predictives for the responses for three participants. Only
the first 300 trials are shown.
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In general, the posterior predictives capture the observed data well. Specif-
ically, the model is able to replicate the bi-modality of the response times and
captures the runs of trials with predominantly correct responses relatively well.
The model also seems to capture correctly that the response times under the
guessing (fast) state have smaller variance than under the controlled state. How-
ever, for some participants, there seem to be many outliers (i.e., slow responses)
that are not predicted by the model, suggesting that the model of the response
times has perhaps tails that are too thin.

We also assessed how well the model predicts the response time distribu-
tions for correct and incorrect responses. Figure 4.11 shows the observed re-
sponse times of the correct and incorrect responses as histograms, overlaid with
the predicted density of the response times — shown as a black line and 90%
CI band. Further, the blue and red lines show the densities under the guessing
and controlled state, respectively. Figure 4.12 shows the observed and predicted
cumulative distribution functions conditioned on the state and response.

The distribution plots show good model fits, as the bi-modality of the re-
sponse times is captured correctly, as well as the proportions of correct and in-
correct answers under the states. However, for some participants, there are clear
signs of a slight misfit. For example, the predicted distribution of the response
times of incorrect answers under the controlled state is shifted slightly to the
right compared to the empirical distribution (this shift is the most visible for
participant H). Further, there is a general tendency of the model to overesti-
mate the variance of the response times under the guessing state, which might
be a consequence of equating the standard deviation of the drift rate (σ) across
all accumulators and states. Another possibility would be to enable bias, by
setting different decision boundaries for each of the accumulators. These alter-
ations to the model would increase its flexibility and should be validated using
simulations - therefore, such additions should be the focus of future projects.
In general, the tendency of the model to imply slightly slower incorrect re-
sponses than the data suggests, could be also caused by the fact that the number
of incorrect responses under the controlled state is low, generally about 10% of
the trials (see Figure 4.12). It is possible that the likelihood is then dominated by
the distribution of the correct responses and the distributions of the responses
under the guessing state, thus favoring a better fit towards them.
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Figure 4.11: Observed and predicted response times distribution of correct and
incorrect responses.
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Figure 4.12: Observed and predicted cumulative distribution conditioned
on the state (blue=guessing, red=controlled) and response (dark=correct,
light=incorrect)
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Parameter estimates for each participant are attached in Appendix 4.B. Pos-
terior contraction for all participants was close to one for most of the parame-
ters, indicating that there occurred substantial updating of the priors through
the observed data, in line with the simulation results which showed strong up-
dating of priors despite relatively modest number of trials (n = 200) in the
simulations. An exception was the parameter π1 which does not update much,
a result that was expected following the simulation results as well. Although
there seems to be variability between participants’ parameter estimates, there
are common patterns that to some degree apply to all participants. Generally,
the states of the HMMs are sticky, with a probability of remaining in the cur-
rent state at about 90% of the trials for both of the states. This percentage is
(likely) dependent on the experimental design of (Dutilh et al., 2011) who var-
ied the pay-off balance in a structured way depending on the participant’s ac-
tions, and should not be interpreted as a general tendency of people to stick in
the current state to exactly this extent.

As for the parameters that were held fixed across states and accumulators,
the non-decision time τ is negligible for the majority of participants; the longest
non-decision time occurred for participant B with about 0.11 sec (110 msec),
with some participants as short as about 0.01 sec (10 msec). Non-decision time
is largely informed by the fastest responses in the data (i.e., the shortest response
time gives the upper bound of the parameter). It is possible that loosening up
equality constraint between the states would reveal that non-decision time is
larger under the controlled state than under the guessing state, representing
additional encoding time and executing a motoric response after a decision is
made; which could also slightly improve the model fit especially regarding the
relatively more variable response times under the controlled state. Relatively
surprising were the values of the standard deviation of the drift rates σ, with
posterior means ranging between 0.13 and 0.27 — quite smaller than specified
by the priors (σ ∼ Gaussian(0.4, 0.1)(0,∞)) — suggesting that the variabil-
ity of the response times is smaller than implied by the prior. Future studies
should pay specific attention to variability of the response times in prior pre-
dictive simulations.

Shorter response times in the actual data compared to the prior predictive
expectations resulted also in a relative mismatch between the prior settings for
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the decision boundaries under the two states. Specifically, the posterior means
of the decision boundary under the controlled state ranged between 0.24 and
0.37 (whereas the prior was setα(1) ∼ Gaussian(0.5, 0.1)(0,∞)). The posterior
means of the decision boundary under the guessing state was as low as between
0.08 and 0.18 (prior α(2) ∼ Gaussian(0.25, 0.05)(0,∞)).

As expected, the average drift rate of the correct response under the guess-
ing state is usually very close to 0.5, implying 50% accuracy. Under the con-
trolled state, the posterior mean of the average drift rate of the correct response
ranged between 0.58 – 0.65. This is slightly smaller than the prior expectation
(which on average expects about 0.7), although it still leads to relatively high
accuracy (at minimum 75%, and leading to accuracy as high as 90%) due to the
small standard deviations of the drift rates.

Thanks to the fact that our model is an EAM model, it is possible to inspect
the pattern of the discontinuous speed-accuracy trade-off within and between
participants in terms of the latent cognitive parameters that control speed of
the evidence accumulation (ν) and the response caution (α). Figure 4.13 shows
this between state trade-off and reveals striking similarity between participants.

4.5 Conclusion & Discussion
This article presented a robust implementation of a model that combines an
EAM with an HMM structure. To our knowledge, this is the first successful
implementation combining both structures in one model. The model was built
to capture the two state hypothesis following from the phase transition model
of the speed-accuracy trade-off (Dutilh et al., 2011) — that there is a guessing
and a controlled state between which participants switch. This hypothesis can
be represented by an HMM structure. Compared to previous HMM appli-
cations on speeded-decision tasks, our model uses an EAM framework for the
joint distributions of the responses and response times, and thus enables in-
ference on latent cognitive parameters, such as response caution or drift rate
(N. Evans & Wagenmakers, 2019).

The model was validated using extensive simulations and by applying it
to real data. The simulations suggested that the model implementation was
robust and did not show pathological behavior. Further, the model achieved
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Figure 4.13: Speed-accuracy trade-off for all participants in the Dutilh et al.
(2011) data set. Black dots show the posterior mean of each participants’ de-
cision boundary (α(1)) and drift rate for the correct response (ν(1)

1 ) under the
controlled state, triangles the same but under the guessing state. Lines connect
the posterior means for separate participants. Colored points show the samples
from the joint posterior distributions.

good parameter recovery and coverage probabilities of the credible intervals.
In the empirical example, the model was fitted to eleven participants who par-
took in the Dutilh et al. (2011) study. The results demonstrate that the model
shows a good fit to the data and is able to capture most of the patterns in the
data. However, the model also showed a slight systematic misfit because the
predicted error responses under the controlled state were slower than that of
the data (a typical example of a phenomenon known as fast errors; Tillman
& Evans, 2020). The results suggested quite strong consistency between par-
ticipants in terms of the speed-accuracy trade-off — suggesting that the inac-
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cessibility region (i.e., a region of speed of accumulation and response caution
which “cannot be accessed”, resulting in switching between two discrete states)
predicted by the phase transition model could be qualitatively similar across
participants (see Figure 4.13).

We used a full Bayesian framework in this article, and with it comes the
perks of defining the prior distributions on the parameters. Setting well be-
haved priors is important in any Bayesian application as they define the subset
of the parameter space that generates data that are expected in a particular ap-
plication of the model. Because the EAMs can cover a lot of heterogeneous
experimental paradigms (with heterogeneous scales of the data), it is impor-
tant to decide on priors in respect to the specific application of the model,
preferably after consulting related research literature, careful reasoning about
the experimental design and the particular parameterization of the model. The
empirical analysis pointed to some discrepancies between empirical parameter
estimates and their priors that highlight misalignment between the priors and
the data. Ideally, such discrepancies would be minimized to avoid a prior-data
conflict (possibly leading to problems with estimation, Box, 1980; M. Evans
& Moshonov, 2006). In our application, the discrepancy between the priors
and the data arose mainly because we apriorily expected longer and more vari-
able response times than was the case in the Dutilh et al. (2011) study. For the
purpose of model validation through extensive simulation, such discrepancy
is not a critical problem as the simulation covered cases with potentially more
variability and outliers (which usually cause problems in fitting), thus exposing
the model to a robustness test.

It is important to reiterate that the priors in this model also serve another
purpose: to solve the label switching problem. As is commonly the case in
HMMs, the current model is identified only up to the permutation of the state
labels. The priors in this article were used to nudge the model towards one spe-
cific permutation — to associate the first state with the controlled response,
and the second state with the guessing response. Such use of the priors was
possible because we specifically assumed the controlled and guessing state, and
followed the implications from the theory about them (Dutilh et al., 2011). In
case the expectation regarding the state identity is more vague (e.g., when ex-
pecting only that the distributions might be multimodal), such use of priors
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becomes much more problematic on both the conceptual and practical level.
On the other hand, some prior specifications could have been even more infor-
mative in the current application. For instance, under the controlled state, the
drift rate for the correct response should be higher than the drift rate for the
incorrect response as the other alternative would imply that the respondent’s
performance is below chance level.

Despite our efforts to solve label switching using informative priors, the
issue of switching labels still persists, albeit to a lesser degree than without in-
formative priors. Specifically, the use of soft order constraints (by specifying
prior distributions that heighten prior probability of a specific state configura-
tion) does not ensure that the labels do not switch at all. To this end, we were
forced to perform additional checks of label switching to ensure that the model
converged to the solution we preferred, and refitting the model if if did not. Vir-
tually the same estimation results would have been obtained if traditional or-
der constraints were used, by effectively truncating the parameter space to the
region which corresponds to the appropriate state interpretation, although in
case one would want to perform model comparison using marginal likelihoods,
the decision of whether or not to use order restriction would make a difference.
Implementing order restrictions would also make it harder to reason about the-
oretically justified prior specification. For the sake of simplicity, this article did
not focus on developing such approach, as its focus was to demonstrate the
possibility of combining EAMs with HMMs at least in estimation context.
Developing proper ways how to identify the model using order constraints,
set reasonable priors, and compute marginal likelihoods would be additional
ways how to take the current modeling framework towards more general ap-
plications.

One of the future applications would be to actually put the continuous and
discontinuous debate under a test. In this article, we presented a model that as-
sumes both discontinous, between state trade-off, and continuous, within state
trade-off inherent to the EAM. Utilizing Bayesian framework makes it natu-
rally attractive to use marginal likelihoods to compare simple EAMs, HMM
combined with an EAM, and a HMM that assume local independence of re-
sponse times and accuracy, to assess which of the hypotheses are supported by
the data. Although methods for estimating marginal likelihoods for EAMs are
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available (N. Evans & Brown, 2018; Gronau, Heathcote, & Matzke, 2019), the
HMM extensions will lead to further problems, as estimating marginal likeli-
hoods for finite mixture models and HMMs is a notoriously difficult problem
(Frühwirth-Schnatter, 2004). Nevertheless, combining clever constraints (so
as to prevent label switching) and development of principled priors would en-
able the use of efficient techniques for estimating marginal likelihoods such as
bridge sampling and its extensions (Gronau et al., 2019; Gronau, Singmann,
& Wagenmakers, 2017, 2020; Meng & Wong, 1996), which are now becom-
ing more available than ever. Of course, multi-model inference would also
benefit from simulation-based calibration approaches build on similar princi-
ples as that of single model inference shown in this article (Schad, Nicenboim,
Bürkner, Betancourt, & Vasishth, 2021).

An alternative to identifying the HMMs using the priors is to assume func-
tionally different emission distributions under the states. For example, as Du-
tilh et al. (2011) point out, it is questionable to assume that guessing requires
evidence to make a response. Therefore, using an EAM to represent the guess-
ing state probably leads to model misspecification, as under guessing there is
no evidence accumulation (about the correct response). Such misspecification
could be fixed, for example, by assuming that the response time of guessing is
just a simple response time (Luce, 1991), and model it appropriately by a single
accumulator independent of the response (which would be a categorical vari-
able with proportion of correct answer fixed at 0.5). In the context of the phase
transition model, such an assumption could further improve the model.

Additional advantages of utilizing Bayesian inference and implementation
in Stan is the relative ease with which the model could be extended from single-
participant model to multiple-participants model and let the individual param-
eters be estimated in a hierarchical structure. Hierarchical models have the
advantage that they can improve individual estimates by pooling information
across the sample. Such approach would also improve the amount of infor-
mation used for estimating the prior probability of the starting state, which is
poorly identified in the single-participant model.

In this article, we used a minimal linear ballistic model to ensure computa-
tional stability of the model. However, such a model can hardly be considered
adequate for characterizing all phenomena of the speeded-decision paradigm,
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and the current results already revealed some ways in which the current model
misfits the data. Thus, it is desirable to find ways how to extend or improve the
current model, while ensuring that the quality of inferences and implementa-
tion does not decline. One alternative to improve the current model is to use
the full LBA model where the variability of the starting point is not fixed at zero
(S. D. Brown & Heathcote, 2008). Another would be to build on a different
evidence accumulation mechanism (such as replacing the ballistic accumula-
tion with sequential sampling models) — for example, the Diffusion Decision
model (DDM, Ratcliff & McKoon, 2008) or the Racing diffusion model (Till-
man, Van Zandt, & Logan, 2020). Regardless of which framework will be in
the end more successful in combination with a HMM, we believe it is impor-
tant to start with a minimal existing model that captures the most crude phe-
nomena from the speeded-decision framework, and expand from there. In the
case of a DDM, that would be to start with the simplest four parameter model
because is can be implemented in a fast and robust way (Navarro & Fuss, 2009;
Wabersich & Vandekerckhove, 2014) and generally focus on the most impor-
tant sources of variability at first (Tillman et al., 2020). Then — provided that
model validations are satisfactory — it is possible to add more parameters. In
each stage of the model building, it is important to stick to the model validation
procedures, some of which were demonstrated in the current article.

Further development and additions to the model should probably also be
combined with simplifications. Such simplifications, as for example, simpli-
fying the distribution under the guessing state (as discussed above) can pro-
vide more computational stability and provide degrees of freedom to extend
the model under the controlled state.

The current model provides a proof-of-principle of a combination of an
EAM with an HMM, and as such can lead to further interesting applications
and extensions, as it opens new possibilities regarding modeling continuous
and discontinuous patterns of response times and accuracy in a single model-
ing framework. Although the current article focused solely on speeded decision
tasks, questions about the continuous and discontinuous relations between re-
sponse times and accuracy is ubiquitous in higher cognitive applications as well,
including study of more complex cognitive tasks and development of strate-
gies used to solve these tasks (Hofman, Visser, Jansen, Marsman, & van der



4.5. CONCLUSION & DISCUSSION 193

Maas, 2018; Raijmakers, Schmittmann, & Visser, 2014; van der Maas & Jansen,
2003). An interesting feature of higher level cognitive tasks that might be rele-
vant to explore using the current framework is the emergence of more efficient
strategies, that lead to qualitatively better response accuracy as well as shorter
response times. Such strategies have been described in many applications, such
as multiplication tasks (Hofman et al., 2018), Mastermind game (Gierasimczuk
et al., 2013; Kucharský et al., 2020), or Progressive matrices tasks (Laurence et
al., 2018; Vigneau et al., 2006). Combination of HMM with EAM in this con-
text would enable uncovering different relations between response times and
accurate depending on whether we look within or between strategies — it is
possible to imagine that an efficient strategy would be faster and more accu-
rate than less efficient strategy, but within those strategies separately, we will
see the traditional speed-accuracy trade-off whereby increasing response cau-
tion increases accuracy at the cost of speed, which would be captured by the
EAM part of the model.

Open Practices Statement
The code and data used in this article are publicly available at github.com/
Kucharssim/hmm_slba. The analyses were not preregistered.

https://github.com/Kucharssim/hmm_slba
https://github.com/Kucharssim/hmm_slba
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Appendix

4.A Derivation of the simplified LBA model

Here, we provide the derivation of the likelihood function for the simplified
LBA model. We assume that each choice option is associated with an accumu-
lator of evidence. These accumulators are independent of each other and the
first accumulator that reaches its decision threshold launches the decision asso-
ciated with it. This leads to general race equations (Heathcote & Love, 2012),
the probability density of observing response a with the reaction time rt com-
prises of the probability density that an accumulator associated with response
a hits the threshold at time rt times the probability that none of the other ac-
cumulators has hit the threshold at an earlier time point:

sLBA(rt, a|ν, σ, α, τ) = f(rt|νa, σa, αa, τa)×
∏
k ̸=a

[1− F (rt|νk, σk, αk, τk)] ,

(4.4)
with νa the mean drift rate, σa the standard deviation of drift rate, αa the de-
cision boundary, and τa the non-decision time for the accumulator a.

The density of the passage time for each accumulator f(rt) is specified as
follows:

rt = τ + t

t =
α

δ

δ ∼ Gaussian(ν, σ)(0,∞).

(4.5)

We assume that the passage time is a sum of the non-decision time and the deci-
sion time t, where the decision time is a result of a linear rise of evidence towards

195
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a decision threshold α, at a drift rate δ drawn randomly from a Gaussian dis-
tribution with mean ν and standard deviation σ, truncated at 0 on the lower
bound. The truncation is assumed because we do not allow for the possibility
of a non-response (i.e., that all drifts in a particular trial are negative, thus never
cross the decision threshold). We do not assume any randomness in the param-
eters τ ,α, ν and σ, hence, the only missing piece in deriving f(rt) is the change
of variables rt = τ + α/δ.

First, we derive the density of the latent drift (δ), which is defined as a trun-
cated normal distribution for δ ≥ 0 and zero otherwise:

g(δ|ν, σ) = 1

σ
×

ϕ
(
δ−ν
σ

)
1− Φ

(−ν
σ

) , (4.6)

where ϕ(.) is the pdf and Φ(.) the cdf of the standard normal distribution,
respectively.

Next, we determine the density of the variable t, which arises as a scaled
reciprocal truncated normal variable for t ≥ 0 and zero otherwise (see also
Nakahara et al., 2006):

h(t|ν, σ, α) = α

t2
× g

(α
t
|ν, σ

)
(4.7)

Finally, to obtain the density of the passage time rt, we shift the distribution
of the decision time t by τ , which results in the following pdf:

f(rt|ν, σ, α, τ) = h(rt− τ |ν, σ, α) = α

(rt − τ)2
×g

(
α

rt − τ
|ν, σ

)
, (4.8)

for rt > τ and zero otherwise.
The cumulative probability function of the passage times,F (rt|ν, σ, α, τ),

is relatively easier to compute, by realizing that the only source of randomness
in this model is the distribution of the latent drift δ. Thus,

P (rt ≤ X) = P (δ ≤ Y )

Y =
α

X − τ
,

(4.9)
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which leads to

F (rt|ν, σ, α, τ) = G

(
α

rt − τ
|ν, σ

)
, (4.10)

where G(.|ν, σ) is the cdf of a normal distribution truncated at zero.

Identifiability and a minimal model

If we had only response time data without choices (e.g., from a single choice
response time task), the entire likelihood would be given by the distribution of
the passage times for a single accumulator f(rt|ν, σ, α, τ). Such distribution
is a ballistic analogue to the shifted Wald distribution (otherwise known as in-
verse Gaussian distribution) of response times (Anders et al., 2016; Chhikara &
Folks, 1988), and would similarly require fixing one of the parameters ν, σ, or
α to achieve identifiability.

Once we have multiple choice tasks, it is possible to estimate more param-
eters per accumulator, as is the case for the LBA (S. D. Brown & Heathcote,
2008). However, some identifiability constraints still need to be put in place.
In this paper, we use the following set of identifiability constraints:∑

i

νi = 1,

1 ≥ νi ≥ 0.

That is, we use the sum-to-one constraint common for the LBA model
(S. D. Brown & Heathcote, 2008; Visser & Poessé, 2017), and make it even
slightly more severe by assuming that no average drift rate can be negative. The
second, additional constraint is convenient for Bayesian implementation as it
allows using Dirichlet priors on the drifts.

The simplified LBA model can be achieved by additionally assuming that
the non-decision time is equal between the accumulators – usually EAM mod-
els assume that non-decision time is by definition the time spend on processes
that are not related to the decision – such as encoding and executing motoric
responses (N. Evans & Wagenmakers, 2019). Further, we may equate σ and α

between the accumulators. The minimal model for a two choice task would
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then contain five parameters: θ = (ν1, ν2, σ, α, τ), of which four of them are
“free” (ν1 and ν2 are collinear due to the sum-to-one constraint). In general,
the simplified LBA model would have K + 3 parameters (of which K + 2 are
free), where K is the number of response options (accumulators).
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4.B Parameter estimates of the Dutilh et al. (2011)
data
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.63 0.63 0.02 0.61 0.66 1.001 3319 2939 0.975
ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 4090 2860 0.992
α(1) 0.37 0.37 0.01 0.36 0.39 1.003 2540 2191 0.991
α(2) 0.14 0.14 0.00 0.13 0.15 1.002 2069 2483 0.992
σ 0.16 0.16 0.01 0.15 0.18 1.000 2250 2672 0.991
τ 0.01 0.01 0.01 0.00 0.02 1.003 1602 1690 0.999

π1 0.46 0.46 0.15 0.22 0.70 1.001 4497 2559 0.051
ρ11 0.92 0.92 0.02 0.88 0.95 1.001 4483 2909 0.973
ρ22 0.89 0.90 0.02 0.85 0.93 1.002 3901 2381 0.960

Table 4.4: Descriptives of the posterior draws for Participant A from Dutilh et
al. (2011).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.65 0.65 0.02 0.62 0.68 1.004 1837 1704 0.960
ν
(2)
1 0.49 0.49 0.01 0.47 0.51 1.000 3065 2167 0.990
α(1) 0.27 0.27 0.01 0.26 0.29 1.000 1979 1934 0.994
α(2) 0.08 0.08 0.01 0.07 0.09 1.005 1168 1061 0.978
σ 0.18 0.18 0.02 0.16 0.21 1.003 1271 1370 0.975
τ 0.11 0.11 0.01 0.08 0.13 1.005 1127 1063 0.996

π1 0.45 0.45 0.14 0.22 0.70 1.001 3029 1997 0.070
ρ11 0.90 0.90 0.02 0.87 0.93 1.001 3038 1897 0.978
ρ22 0.84 0.84 0.03 0.80 0.89 1.001 3049 2364 0.946

Table 4.5: Descriptives of the posterior draws for Participant B from Dutilh et
al. (2011).
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.64 0.64 0.02 0.61 0.68 1.001 2190 1837 0.953
ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 2883 2091 0.987
α(1) 0.35 0.35 0.01 0.34 0.37 1.002 1985 1831 0.986
α(2) 0.15 0.15 0.01 0.14 0.16 1.001 1693 1564 0.984
σ 0.17 0.17 0.01 0.15 0.19 1.001 2022 1734 0.984
τ 0.01 0.01 0.01 0.00 0.03 1.002 1358 1622 0.998

π1 0.46 0.46 0.14 0.23 0.69 1.001 3171 2226 0.120
ρ11 0.91 0.92 0.02 0.88 0.94 1.000 3279 1883 0.968
ρ22 0.87 0.88 0.03 0.82 0.92 1.002 2925 2082 0.937

Table 4.6: Descriptives of the posterior draws for Participant C from Dutilh et
al. (2011).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.61 0.61 0.01 0.60 0.62 1.000 2911 2213 0.994
ν
(2)
1 0.50 0.50 0.00 0.50 0.51 1.004 3268 1746 0.998
α(1) 0.30 0.30 0.00 0.30 0.31 1.000 2889 1793 0.998
α(2) 0.11 0.11 0.00 0.10 0.11 1.001 1391 1591 0.999
σ 0.13 0.13 0.00 0.12 0.14 1.000 2095 2116 0.998
τ 0.00 0.00 0.00 0.00 0.01 1.001 1131 1488 1.000

π1 0.54 0.54 0.15 0.29 0.78 1.000 3930 2281 0.027
ρ11 0.90 0.90 0.01 0.88 0.92 1.000 3998 2251 0.987
ρ22 0.90 0.90 0.01 0.88 0.92 1.000 3513 1906 0.987

Table 4.7: Descriptives of the posterior draws for Participant D from Dutilh et
al. (2011).
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.01 0.60 0.65 1.001 2303 2036 0.978
ν
(2)
1 0.50 0.50 0.01 0.49 0.51 1.000 2858 2045 0.996
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1530 1782 0.994
α(2) 0.14 0.14 0.01 0.12 0.15 1.001 957 1785 0.983
σ 0.15 0.14 0.01 0.13 0.16 1.001 1458 1674 0.990
τ 0.02 0.01 0.01 0.00 0.04 1.001 899 987 0.997

π1 0.46 0.45 0.14 0.23 0.70 1.000 2769 1768 0.079
ρ11 0.85 0.85 0.02 0.80 0.88 1.002 2862 1848 0.959
ρ22 0.85 0.85 0.02 0.81 0.89 1.000 2668 1749 0.957

Table 4.8: Descriptives of the posterior draws for Participant E from Dutilh et
al. (2011).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.01 0.60 0.64 1.002 1999 2295 0.984
ν
(2)
1 0.51 0.51 0.01 0.50 0.51 1.001 3617 2235 0.998
α(1) 0.28 0.28 0.01 0.27 0.29 1.003 1206 1413 0.994
α(2) 0.12 0.12 0.01 0.11 0.13 1.004 893 803 0.975
σ 0.16 0.16 0.01 0.14 0.18 1.003 1023 974 0.987
τ 0.05 0.05 0.01 0.02 0.07 1.004 874 815 0.995

π1 0.45 0.45 0.14 0.23 0.70 1.004 2860 1943 0.102
ρ11 0.91 0.91 0.01 0.88 0.93 1.002 2486 1753 0.986
ρ22 0.91 0.91 0.01 0.89 0.93 1.001 2647 1798 0.988

Table 4.9: Descriptives of the posterior draws for Participant F from Dutilh et
al. (2011).
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.58 0.58 0.01 0.56 0.61 1.001 3076 2370 0.977
ν
(2)
1 0.50 0.50 0.01 0.48 0.51 1.000 2903 2069 0.993
α(1) 0.29 0.29 0.01 0.28 0.31 1.001 1334 1996 0.990
α(2) 0.15 0.16 0.01 0.14 0.17 1.001 1109 1461 0.978
σ 0.17 0.17 0.01 0.15 0.19 1.000 2029 1885 0.986
τ 0.02 0.01 0.01 0.00 0.04 1.001 1049 1069 0.997

π1 0.46 0.46 0.14 0.23 0.69 1.001 2437 1881 0.114
ρ11 0.89 0.89 0.03 0.84 0.93 1.000 2661 2149 0.953
ρ22 0.88 0.89 0.03 0.84 0.93 1.001 2175 2087 0.946

Table 4.10: Descriptives of the posterior draws for Participant G from Dutilh
et al. (2011).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.64 0.63 0.02 0.61 0.67 1.000 2787 2656 0.959
ν
(2)
1 0.51 0.51 0.02 0.48 0.54 1.001 3673 2653 0.978
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 2982 2630 0.991
α(2) 0.08 0.08 0.01 0.07 0.09 1.002 1922 1484 0.977
σ 0.27 0.27 0.02 0.23 0.31 1.001 2001 1784 0.938
τ 0.09 0.09 0.01 0.06 0.10 1.002 1825 1520 0.997

π1 0.55 0.55 0.14 0.30 0.77 1.002 4024 2054 0.067
ρ11 0.94 0.94 0.01 0.92 0.96 1.002 3678 2633 0.989
ρ22 0.88 0.88 0.02 0.84 0.92 1.003 3683 2612 0.958

Table 4.11: Descriptives of the posterior draws for Participant H from Dutilh
et al. (2011).
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.62 0.62 0.02 0.60 0.65 1.001 1423 1521 0.968
ν
(2)
1 0.51 0.51 0.01 0.50 0.53 1.000 2217 1289 0.991
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1851 1275 0.993
α(2) 0.10 0.10 0.01 0.09 0.12 1.001 899 934 0.978
σ 0.26 0.25 0.02 0.22 0.30 1.001 1074 1177 0.944
τ 0.06 0.06 0.01 0.04 0.08 1.001 854 789 0.996

π1 0.55 0.55 0.15 0.30 0.80 1.000 2496 1225 -0.001
ρ11 0.91 0.91 0.01 0.89 0.93 1.001 2211 1267 0.986
ρ22 0.90 0.90 0.02 0.88 0.93 1.000 2047 1255 0.982

Table 4.12: Descriptives of the posterior draws for Participant I from Dutilh et
al. (2011).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.58 0.58 0.01 0.56 0.59 1.000 4004 3489 0.992
ν
(2)
1 0.51 0.51 0.01 0.50 0.52 1.002 4176 2785 0.995
α(1) 0.24 0.24 0.01 0.23 0.25 1.001 2186 2528 0.996
α(2) 0.09 0.09 0.01 0.08 0.10 1.001 1731 1602 0.984
σ 0.18 0.18 0.01 0.16 0.20 1.002 2166 2552 0.988
τ 0.05 0.06 0.01 0.04 0.07 1.002 1674 1606 0.997

π1 0.45 0.45 0.14 0.22 0.69 1.001 4561 2501 0.103
ρ11 0.94 0.94 0.01 0.92 0.96 1.000 3888 2076 0.991
ρ22 0.89 0.89 0.02 0.86 0.92 1.002 4567 2907 0.977

Table 4.13: Descriptives of the posterior draws for Participant J from Dutilh et
al. (2011).
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Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail Contraction

ν
(1)
1 0.66 0.66 0.02 0.63 0.69 1.001 1492 1412 0.953
ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 1757 1341 0.990
α(1) 0.30 0.30 0.01 0.28 0.31 1.000 1590 1497 0.992
α(2) 0.10 0.10 0.01 0.09 0.11 1.002 769 778 0.985
σ 0.21 0.21 0.02 0.19 0.24 1.000 944 1039 0.973
τ 0.04 0.05 0.01 0.03 0.06 1.002 708 725 0.997

π1 0.46 0.46 0.15 0.22 0.70 1.000 2083 1334 0.040
ρ11 0.91 0.92 0.02 0.88 0.94 1.002 1898 1417 0.977
ρ22 0.92 0.92 0.02 0.89 0.94 1.000 2218 1371 0.978

Table 4.14: Descriptives of the posterior draws for Participant K from Dutilh
et al. (2011).
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Part II

Addressing Imperfections
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Aim for the sky and you’ll hit the ceiling.
Aim for the ceiling and you’ll stay on the
floor.

–Bill Shankly

Chapter 5

Bayesian Sample Size Planning for
Developmental Studies

This chapter is published as Visser, I., Kucharský, Š., Levelt, C., Stefan, A. M.,
Wagenmakers, E.-J., and Oakes, L. (2023). Bayesian sample size planning
for developmental studies. Infant and Child Development, e2412. doi:
10.1002/icd.2412
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Abstract

Running developmental experiments, particularly with infants, is often time con-
suming and intensive, and recruitment of participants is hard and expensive. Thus, an
important goal for developmental researchers is to optimize sampling plans such that
neither too many nor too few participants are tested given the hypothesis of interest.
One approach that enables such optimization is the use of Bayesian sequential designs.
The use of such sequential designs allows data collection to be terminated as soon as
the evidence is deemed sufficiently strong, without compromising the interpretability
of the test outcome. In this tutorial, we illustrate how to plan a Bayesian sequential
testing design prior to data collection by the method of Bayes factor design analysis -
the Bayesian equivalent of power analysis - and discuss the relevance of this for devel-
opmental psychologists. The tutorial provides a step-by-step guide to perform such
analyses, and the methods are illustrated using commonly used statistics in a typical
infant looking time paradigm such that researchers can easily adapt these methods for
their studies.

5.1 Introduction

One myth of infant research is that it is a science of large effects
(Oakes, 2017). Small sample sizes have been accepted as the norm,
in part, because it was believed that effect sizes are larger than what

seems to be the case now, thus, smaller sample sizes appeared acceptable (Schäfer
& Schwarz, 2019). Researchers have difficulty collecting data from large sam-
ples of infants. Each infant tested reflects hours of time and effort by the re-
search team. Infants are recruited via birth records, hospitals, advertisements
in newspapers, or public outreach. Eligible infants have to be scheduled both
at a time that is convenient for the infants’ family, and at a time where research
staff is available. After the session it must be determined whether the infant
was actually eligible and whether the data collected are of sufficient quality and
quantity to be included. Typically, data from a large minority of the sessions
are discarded due to fussiness, low data quality, or too many missing trials for
instance. Finally, the usable data may need to be coded and processed before
they can be analyzed. Thus, collecting data from infants is hard, and as a re-
sult, researchers have historically targeted the smallest reasonable sample size
(Oakes, 2017; Peterson, 2016).
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Planning for what appears to be the smallest reasonable sample size often
yields underpowered studies (Bergmann et al., 2018; Oakes, 2017). For example,
as recently as 2015, the modal sample size in published research using looking
time methods with infants was about 14 infants per cell (and invariably there
are only few trials per infant). Given the observed typical effect sizes in these
studies, this sample size does not provide sufficient statistical power (Oakes,
2017). However, the problem of low statistical power is not confined to in-
creased type II error rates; underpowered studies also increase the rate of false
discoveries in a research field. That is, when samples are small, this not only in-
creases the chance that an existing effect will not be discovered, it also increases
the chance that a detected effect is in fact non-existent (Colquhoun, 2014). As
a result, there has been a call for increasing sample sizes in infant research in
general. Yet, this one-size-fits-all solution is problematic for researchers who al-
ready have difficulty in recruiting and testing infants in their studies. What is
required is a way of increasing the likelihood of arriving at informative results
without the need to run huge numbers of participants in every single study. In
other words, there is a need for efficient sampling plans. In this paper, we show
how the tandem of Bayesian Sequential Testing (BST) and Bayes Factor De-
sign Analysis (BFDA) can deliver just that. Beyond the option of efficient sam-
ple size planning, applying Bayesian statistics rather than frequentist statistics
brings other advantages as well (see e.g. van de Schoot et al., 2014). Although
our discussion here is focused on infants, these issues apply similarly to devel-
opmental research more broadly, and the methods we introduce and illustrate
in the following apply to infant research and any developmental research alike.

5.1.1 Goals & overview
In this tutorial we detail how BST and BFDA can be combined to plan and ex-
ecute highly efficient studies in infant and developmental psychology research.
We first describe how to use BST to analyse data as it comes in, until a pre-
defined criterion is met. Next, we show how BFDA can be used to analyze cru-
cial study characteristics, such as the expected number of participants needed.
Combining these methods delivers a powerful tool to optimize sampling plans
and increase efficiency in carrying out developmental research. Note that BFDA,
the main focus of this paper, is also informative when sequential testing is im-
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possible or impractical.

It is important to stress that this type of analysis is useful in settings in
which the goal of the research is to test a previously stated hypothesis. The
methods are not applicable when the goal of a particular study is merely ex-
ploratory. Application of the methods presented in this tutorial requires that
the researcher starts with a research question, a hypothesis, and a statistical test
that can be used to test the hypothesis. Such a hypothesis can of course be
pre-registered (Davis-Kean & Ellis, 2019; Nosek, Ebersole, DeHaven, & Mel-
lor, 2018), and the BFDA can help strengthen the case for the proposed (pre-
registered) sampling plan.

We have a number of goals with this tutorial. Our first goal is to briefly
introduce basic concepts from Bayesian statistics, provide pointers to further
reading for those unfamiliar with these concepts, and provide a gentle intro-
duction to the conceptual framework of BST and BFDA. The second goal is
that after studying the material in this tutorial, the interested reader can start
applying these methods in their own research. To facilitate this, we first present
a step-by-step guide to BST and BFDA, and then illustrate their use in an exam-
ple study applying a t-test. We provide analysis code in R (R Core Team, 2020)
both in text and in Online Supplementary Materials (available at osf.io/
wak9e/). The analysis code can be easily adapted to the goals of the researcher
(see github.com/nicebread/BFDA/blob/master/package/doc/BFDA
_manual.pdf for the BFDA manual and examples). Our final goal is to dis-
cuss the usefulness, applicability, and extension of the presented methods.

Note that there are other tutorials that discuss the use of Bayesian analy-
sis more broadly and BST more specifically in infant and developmental psy-
chology. Notably, Mani et al. (2021) provide an excellent introduction to se-
quential testing and extensively discuss a number of applications of BST in
early word learning in infants. Marsman and Wagenmakers (2017) introduce
Bayesian analysis more generally for a developmental psychology audience and
also (briefly) discuss BST. van de Schoot et al. (2014) introduces Bayesian analy-
sis more broadly for developmental psychologists. Although for readers famil-
iar with this material the next section may be repetitive, we include an introduc-
tion to these topics here to provide the necessary background for readers who
are less familiar with those other sources before we start discussing BFDA.

https://osf.io/wak9e/
https://osf.io/wak9e/
https://github.com/nicebread/BFDA/blob/master/package/doc/BFDA_manual.pdf
https://github.com/nicebread/BFDA/blob/master/package/doc/BFDA_manual.pdf
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The methods of BST and BFDA are not specific to infant and developmen-
tal research. However, the problems of underpowered studies are exacerbated
in these types of research for a number of reasons. Infant development and
development generally is a period of large change resulting in large individual
differences, and it is exactly those that we are after in developmental psychology.
The developing cognitive system also results in large intrinsic noise or variabil-
ity and our measurement instruments often lack precision, again resulting in
large variability in the data. Finally, infants and children generally show more
exploration behavior, again resulting in larger variability in the data than would
be expected when testing adults. For all these reasons, developmental psychol-
ogy in particular may benefit from adopting these methods.

5.1.2 Bayesian Sequential Testing
When preparing a study, researchers determine their sampling plan. In com-
mon frequentist practice, this typically means deciding on a fixed number of
participants prior to data collection, usually based on a power analysis or pre-
vious studies using similar methods (J. Cohen, 1988). The approach in the
Bayesian framework is rather different. Bayesian analysis is all about learning
from data, that is, updating our beliefs when faced with new information. This
learning process can be repeated indefinitely as additional data comes in (for
details, see box ‘Bayesian updating’). Therefore, the Bayesian statistical frame-
work allows for flexible sampling plans, and sequential sampling in particular.
Instead of deciding on a fixed number of participants to test, a sampling plan in
the Bayesian framework means adopting a particular ‘stopping criterion’. This
often takes the form of deciding on the strength of the evidence that is required
to reach a conclusion about the tested hypotheses. The strength of evidence is
expressed in a quantity called the “Bayes factor” (Jeffreys, 1961) — see the box
’Bayesian evidence’ for details. A stopping criterion could therefore be formu-
lated as: ‘stop collecting more data when the Bayes factor reaches the value of
10 or more’. BST thus entails the following steps: i) test a participant, ii) com-
pute the Bayes factor, iii) check whether stopping criteria have been met and
stop if that is the case, otherwise repeat the steps. Note that other considera-
tions can go into determining a stopping criterion such as a minimal required
sample size, see discussion in Mani et al. (2021); we return to this issue in the
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section 5.2.1.

Bayesian updating

Bayesian inference relies on updating our beliefs when presented with
new data. For more in-depth introductions we recommend the 2018
special issue from Psychonomic Bulletin & Review (Vandekerckhove,
Rouder, & Kruschke, 2018), as well as several textbooks (Hudson, 2021;
Lee & Wagenmakers, 2013). In general, Bayes’ rule allows one to up-
date plausibility assessments based on predictive success: hypotheses
that predicted the data relatively well gain credibility, whereas hypothe-
ses that predicted the data relatively poorly suffer a decline, as can be
seen from Bayes’ rule (e.g., Wagenmakers, 2020; Wagenmakers, Morey,
& Lee, 2016):

p(θ|data)︸ ︷︷ ︸
Posterior

= p(θ)︸︷︷︸
Prior

× p(data|θ)
p(data)︸ ︷︷ ︸

Updating factor

. (5.1)

Here, θ represents a parameter in the model, for example the true (i.e.,
population) correlation coefficient between two variables. We can start
by quantifying the plausibility of different values of θ values through a
prior probability distribution p(θ). In this distribution, we can assign
higher probability density to parameter values that we deem more plau-
sible than to values that we deem less plausible before seeing new data,
thereby formulating what we already know about the parameter (e.g.,
from estimates of a correlation in previous experiments). We call this
our "prior". As we observe new data, we update this prior distribution
which becomes our posterior distribution. Specifically, values of θ that
predicted the data well, increase in plausibility (i.e., obtain a higher prob-
ability density), and values of θ that predicted the data poorly, decrease
in plausibility (i.e., obtain a lower probability density). This Bayesian
learning process can continue indefinitely. As we collect data, our pos-
terior distribution of observations becomes the prior distribution for
the analysis of the next observations.
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The core idea of sequential sampling and stopping criteria is already com-
monly implemented in studies on learning and in particular in habituation
studies in infants (see, e.g., Kucharský, Zaharieva, Raijmakers, & Visser, 2022;
Oakes, 2017). In those situations, the stopping criterion is applied to a series of
trials from an individual. The habituation phase is stopped, and the test phase
started, when there is enough evidence to conclude that an infant has habitu-
ated, or that a child has learned the task at hand to a sufficient extent. A similar
reasoning is possible on the level of the study, where the stopping criterion is
applied to data from subsequent participants (rather than subsequent trials) to
decide whether there is evidence in support of the tested hypothesis, and hence
to stop collecting data (i.e., recruiting new participants). BST can be used for
this purpose precisely; determining a good strategy for using and planning BST
comes from applying BFDA.

Crucially, conclusions drawn from Bayesian analyses are not dependent on
a pre-defined sampling plan, and are immune to optional stopping (Edwards,
Lindman, & Savage, 1963; Lindley, 1993; Rouder, 2014). This is unlike fre-
quentists approaches, in which the interpretation of the p-value becomes in-
valid through data "peeking" during data collection (Armitage, McPherson, &
Rowe, 1969), unless the critical test statistic has been appropriately adjusted to
preserve the correct error rate under sequential testing (O’Brien & Fleming,
1979; Pocock, 1977; Stallard, Todd, Ryan, & Gates, 2020; van de Schoot et al.,
2014). We return to this issue in the Discussion.

BST allows for flexible data collection procedures in which a researcher
monitors the accumulating evidence, and stops sampling precisely when com-
pelling evidence for either hypothesis has been reached (Schönbrodt, Wagen-
makers, Zehetleitner, & Perugini, 2017). Instead of deciding a-priori on the
number of participants to test, the researcher decides what would be compelling
evidence in support of a hypothesis. Thus, stopping rules in sequential Bayes
factor designs are determined based on the researcher’s definition of strong evi-
dence (see e.g. Kass & Raftery, 1995, for guidelines about strength of evidence).
For example, if a researcher deems a Bayes factor of BF=10 compelling for their
particular research context, they would terminate data collection once a Bayes
factor of BF10 = 10 (i.e., supporting the alternative hypothesis) or BF10 = 1/10

(i.e., supporting the null hypothesis) is reached, regardless of how many sub-
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jects were tested to achieve that goal. In addition to evidence thresholds, re-
searchers may include other criteria that allow to take into account resources
available and thus optimize the balance between the desired evidence to achieve
with the current study, and the practical constraints the researchers face when
executing the study.

Sequential hypothesis tests are particularly advantageous in research con-
texts where data collection is costly or time-consuming. They have repeatedly
been shown to be more efficient than tests with comparable error rates that fix
sample sizes before the experiment (Schönbrodt et al., 2017; Wald & Wolfowitz,
1948). In particular, the sample size required to meet a stopping rule as iden-
tified in a BST is smaller than the sample size identified a-priori from a power
analysis for the frequentist fixed-N equivalent of the test (Schönbrodt & Wa-
genmakers, 2018). From a practical perspective, this means that by using BST
procedures, conclusions about hypotheses can be reached earlier, which helps
to save resources.

Bayesian evidence

Bayesian updating is applicable to hypothesis testing. In psychology, the
most popular models are the null hypothesis H0 : δ = 0 and the al-
ternative hypothesis H1 : δ ̸= 0, where δ denotes effect size. Note
that for Bayesian inference, a fully specified H1 model is required. This
means that it is not sufficient to simply formulate an inequality, e.g.,
H1 : δ ̸= 0, as it is typically done in frequentist inference. Instead, re-
searchers need to make a probabilistic commitment regarding the values
that the parameter is likely to take on in the form of a prior distribution,
see Box “Bayesian updating”. When comparing two hypotheses, it is
convenient to apply the odds form of Bayes’ rule:

p(H1|data)
p(H0|data)︸ ︷︷ ︸

Posterior odds

=
p(H1)

p(H0)︸ ︷︷ ︸
Prior odds

× p(data|H1)

p(data|H0)︸ ︷︷ ︸
Bayes factor

, (5.2)

In this example, the prior odds reflect the a-priori plausibility of H0 rel-
ative to H1. As prior odds are often not formally quantified and indi-
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vidual researchers may disagree on the prior plausibility of individual
hypotheses, they are usually set to 1 (i.e., a position of equipoise), or left
unspecified, so that every reader of a Bayesian analysis can insert their
own subjective a-priori plausibilities. The focus in Bayesian hypothe-
sis testing is on the quantification of the evidence, that is, the degree to
which the data bring about a change from prior to posterior odds. The
evidence is the relative predictive performance of H0 vs. H1 (i.e., does
the evidence favor H0 or H1), and it is generally known as the Bayes fac-
tor (Jeffreys, 1935, 1939, 1961; Kass & Raftery, 1995).
The Bayes factor subscripts indicate what model is in the numerator
and denominator of Equation 5.2, so a subscript of 10 means that the
model H1 is in the numerator and the model H0 is in the denomina-
tor. For instance, BF10 = 3 indicates that the observed data are 3 times
more likely under H1 than under H0. When BF10 = 0.2, the observed
data are 0.2 times more likely under H1 than under H0. Because peo-
ple find this difficult to parse, Bayes factors lower than 1 are usually pre-
sented after switching numerator and denominator; here we would have
BF01 = 1/0.2 = 5, so that the observed data can be said to be 5 times
more likely under H0 than under H1.
Although the Bayes factor quantifies the evidence in a graded fashion,
in order to facilitate interpretation and communication, Harold Jeffreys
proposed a classification scheme in which Bayes factors from 1 to 3 are
termed “weak evidence”, Bayes factors from 3 to 10 are “moderate evi-
dence”, Bayes factors from 10 to 30 are “strong evidence”, Bayes factors
from 30 to 100 are “very strong evidence”, and those larger than 100 are
“extreme evidence” (e.g., Jeffreys, 1961, Appendix B; Lee & Wagenmak-
ers, 2013; Wasserman, 2000).
In summary, the Bayes factor is a relative measure of predictive suc-
cess. This means that the Bayes factor can be used to discriminate be-
tween “absence of evidence” (when Bayes factors are near 1, such that the
data do not provide much diagnostic value) and “evidence of absence”
(when Bayes factors favor H0; see also Keysers, Gazzola, & Wagenmak-
ers, 2020). Moreover, when the evidence is found not to be sufficiently
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compelling, additional data may be collected in an attempt to sharpen
our knowledge concerning the relative predictive performance of the ri-
val hypotheses – a straightforward application of the Bayesian learning
cycle.

5.1.3 Bayes Factor Design Analysis
In designing a BST study, the stopping criterion is crucial. The stopping crite-
rion influences the design characteristics of a study. For example, if more evi-
dence is required to stop data collection, say, a Bayes factor of 20 instead of a
Bayes factor of 10, it will usually take longer to reach this amount of evidence,
leading to studies with larger sample sizes on average. But how long will it take
to reach this amount of evidence? And how often will researchers have to ter-
minate data collection because they ran out of resources, that is, reached their
maximum number of participants, rather than having obtained conclusive evi-
dence? One way to establish this is to use Bayes Factor Design Analysis (BFDA;
Schönbrodt & Wagenmakers, 2018; Stefan, Gronau, Schönbrodt, & Wagen-
makers, 2019). By using BFDA, the researcher can gain insights into the effects
of their specified stopping criteria before running a study, similar to a power
analysis investigating the effect of a chosen sample size on statistical power. As
in a frequentist power analysis, the (expected) population effect size influences
the results of a BFDA, specifically, the expected sample sizes under different
stopping rules.

BFDA is a simulation-based method for design analysis. In a simulation, ar-
tificial data for virtual participants is generated from a user-defined population
under the design of interest (see Arnold, Hogan, Colford, & Hubbard, 2011,
for an introduction to simulation-based design analyses). Here, the popula-
tion mainly refers to the expected effect size, for example, a specific correlation
coefficient or Cohen’s δ for a difference between two groups or two conditions.
The design refers to the type of statistical test as well as the stopping rule that
is employed.

By simulating the same scenario many times (a so-called Monte Carlo sim-
ulation), methods like BFDA can determine the design characteristics. The
idea is that by simulating not one, but many samples under a given design, and
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applying the hypothesis testing procedure to each of the samples, a researcher
obtains a distribution of plausible results. In a next step, the researcher can
further investigate this distribution to determine the design characteristics. In
a sequential Bayesian design, the most important design characteristics are the
expected sample size, and the probability that the sequential process ends at the
upper or lower Bayes factor threshold, respectively. If the Bayes factor at termi-
nation shows evidence for the incorrect model (e.g., in favor the null model
when the simulated effect size is unequal to zero), this is termed “misleading
evidence”. By investigating the results of a BFDA, a researcher can identify the
probability of misleading evidence for a certain design, sometimes also called
the “error rates” of the design. Error rates are one possible design characteristic
that can be evaluated using a BFDA, but BFDA is a flexible approach that al-
lows researchers to investigate every aspect of the design they are interested in
(Stefan et al., 2019).

Before a study is conducted, researchers can opt to conduct a BFDA to in-
vestigate the design characteristics of their planned design. However, it is also
possible to conduct multiple BFDAs with different stopping rules in an iter-
ative process. This allows researchers to plan a design that fulfills the require-
ments of a certain research scenario, for example, in terms of error control or
evidence strength (Stefan, Schönbrodt, Evans, & Wagenmakers, 2022).

In the following sections we provide two examples for a BFDA including
commented code that can be easily adapted for different research scenarios. For
an in-depth tutorial-style overview of BFDA, we refer the reader to Stefan et al.
(2019), and to the manual of the R package BFDA (Schönbrodt & Stefan, 2018).

5.2 Planning for BST and BFDA

There are several steps and decisions that need to be made in order to run a BST
and a BFDA, which are discussed in turn below. Please refer to Figure 5.1 for an
overview of the steps in this section. Ideally, these decisions are made prior to
collecting the data, possibly made completely transparent in a preregistration
or registered report (Crüwell, Stefan, & Evans, 2019).
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Figure 5.1: Flowchart summarizing the recommended steps when planning a
Bayesian sequential study.
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5.2.1 BST specifications
Research question and hypotheses

We recommend that researchers carefully set the goal of the study, including
the research question they wish to answer, and the competing hypotheses that
constitute different theoretical standpoints. When the research goal is more
exploratory or the aim is to arrive at precise estimates of an effect size for ex-
ample, these methods are not applicable or useful. Without clarifying the goals
of the study and the hypotheses one wishes to test, there is no reason to run a
sequential hypothesis test.

Statistical models that represent the hypotheses

Once the research goals have been set, researchers need to specify the statistical
analysis that will be used to answer the research questions. When the goal is to
determine whether a particular effect is present or absent (e.g., do infants show
a novelty preference? do infants learn a rule?), researchers typically use null hy-
pothesis testing. In the Bayesian framework, null hypothesis testing is achieved
by specifying two models: one that represents the null hypothesis, and one that
represents the alternative hypothesis. The alternative hypothesis, or alternative
model, requires that a prior distribution of the effect of interest be defined to
specify the range of plausible values of the effect, under the assumption that
the effect exists. The null hypothesis can be specified as a point-null hypothe-
sis, as commonly used in frequentist analyses, or as an interval null hypothesis,
where the boundaries of the interval can, for example, be determined by argu-
ments about the smallest effect size that would be of interest (R. D. Morey &
Rouder, 2011). Note that BFDA can be used to analyse the sensitivity of the
design when altering such factors.

During this stage, it is advisable to research and plan how the analysis will be
carried out. Most common analyses (e.g., t-test, ANOVA, regression, etc.) are
implemented in user-friendly statistical software (e.g., JASP), or come as pack-
ages with programming languages (e.g., BayesFactor (R. Morey & Rouder,
2018) in R).1

1For more complicated models one may turn to using probabilistic programming lan-
guages, e.g., JAGS (Plummer, 2003) or Stan (B. Carpenter et al., 2017), or use additional soft-
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Sequential testing design

The next step is to establish the design of the sequential testing study. First,
stopping criteria must be defined. Stopping criteria are any rules that determine
whether or not to collect additional data at any specific point in the study. More
precisely, they specify the conditions that determine conclusion of the data col-
lection. For example, data collection may be concluded once a certain evidence
threshold, say, a Bayes factor of 10 or 1/10, has been reached (Schönbrodt et
al., 2017). Evidence thresholds can also be combined. For example, in a case
where multiple research questions are of interest, researchers can define that
the data collection will end once all of the questions are answered satisfactorily,
i.e. reached their respective evidence thresholds.

Stopping criteria may also be informed by practical restrictions and resource
constraints. For example, a researcher interested in an effect that is present in a
particular age group might only have restricted access to participants in that age
group. Sequential Bayes factor designs allow researchers to incorporate these
practical restrictions into the planned design. Specifically, it is possible to inte-
grate a maximum sample size in the stopping criteria of the test. For example,
when it is impossible or impractical to collect a data set of more than 50 partic-
ipants, the researcher may decide to stop the data collection when the evidence
thresholds have been met, or when a maximum sample size of 50 participants is
reached (Schönbrodt et al., 2017). Importantly, when stopping the data collec-
tion for whatever reason – whether hitting the evidence threshold or the max-
imum sample size – the interpretation of the Bayes factor always remains the
same: it is the relative evidence for one hypothesis over another, and no ad-
justment or justification is needed. Although it may be necessary under some
circumstances, specifying a maximum sample size has the disadvantage that the
evidence accrued when stopping can be non-decisive.

Another practical restriction that may occur is that participant recruitment
cannot be stopped immediately when the stopping criterion is met, or that
the statistical test cannot be performed after every single participant (Friede &
Kieser, 2006). For example, participants may be assigned overlapping time slots

ware and packages that make building special purpose models easier, e.g. the graphical model-
ing module in JASP (JASP Team, 2021) or use packages that include a wider variety of designs
such as the R-package brms (Bürkner, 2017)).
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in a lab schedule, or data collection, entry, and processing may be bundled for
several participants for efficiency reasons. Sequential designs also allow flexible
adaptations for such scenarios. Specifically, rather than calculating the Bayes
factor after every participant, Bayes factors can be calculated in batches of par-
ticipants according to how the data comes in. The stopping criteria would then
be evaluated after each batch of participants instead of after each individual par-
ticipant (Schönbrodt et al., 2017). However, calculating the Bayes factor after,
say, every 10th participant changes the design characteristics (i.e., the error rates
and the resulting expected sample sizes). It is therefore important to be mind-
ful of these design choices when evaluating the design using BFDA. We will
provide an example in the following section.

If the data are convincing, stopping thresholds can be hit very early in se-
quential designs, say, after less than five observations per cell. Some researchers
find this discomforting because they aim for a minimum degree of precision
in the estimated parameters (Kruschke & Liddell, 2018). Due to sampling vari-
ability, an effect size estimate may be unreliable for small samples, and hence
one may want to require a minimal sample size. That is similarly the case when
individual differences are expected and of interest; to study such individual dif-
ferences, a minimal sample size is also advisable. Note that this is similarly the
case for frequentist sampling plans. BST and BFDA allow for the specification
of a minimum sample size in addition to (or instead of) a maximum sample size.
The minimum sample size then determines the number of data points that will
be collected at minimum, regardless of the strength of the evidence in the data
(Kelley & Rausch, 2006; Maxwell, Kelley, & Rausch, 2008; Schönbrodt et al.,
2017).

5.2.2 Bayes factor design analysis
The next step is to investigate the characteristics of the selected design by run-
ning a BFDA. To specify the design, one must know the expected effect size,
the statistical test that is used to test the hypothesis under study, and the stop-
ping criteria in case of a sequential design. To be clear, BFDA is not required to
run a sequential study design, but it is an optional step that can help reassure
researchers that their approach is reasonable given the available resources. In
sum, researchers can use a BFDA to determine whether the design needs to be
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changed before data collection commences. Note that running a BFDA (e.g.
with a fixed n) can still provide useful information about the feasibility of the
study also when the design does not involve sequential testing.

Typically, a BFDA would be run such that it reflects the candidate design
that is entertained during the planning stage of the experiment. In basic sce-
narios that rely on running standard statistical tests (e.g., t-tests, test of cor-
relations, etc.), obtaining results of BFDA is straightforward using the BFDA
package in R (Schönbrodt & Stefan, 2018), or using the BFDA interactive web-
site shinyapps.org/apps/BFDA/ (Stefan et al., 2019). In situations where
the current design or statistical tests are not readily implemented in a dedi-
cated software package, researchers need to set up the analysis themselves. If
the specified models are computationally complex, it is possible that running
a full BFDA is impractical, as running the analysis would take a prohibitive
amount of time and resources. Below, we provide some recommendations for
alternative solutions.

Estimating the time needed to run the simulation

The BFDA simulations take time to run, and the amount of time will vary
depending on the computer system available, the complexity of the statistical
model and the study design. Thus, a good strategy is to first conduct a small
number of simulations to get an estimate of the amount of time to run the full
BFDA simulation. Consider the following example: A researcher plans to run
a sequential study that has a maximum sample size of 100, a stepsize of 1 (so the
test will be conducted after each subject), and plans to run 1000 “replications”
of the hypothetical experiment under each hypothesis. This BFDA would in-
volve simulating 2000 datasets (1000 for the null hypothesis, and 1000 for the
alternative hypothesis). In addition, because each run of the analysis might re-
quire computing the Bayes factor up to 100 times (if the maximum number of
subjects was reached before the pre-specified Bayes Factor was achieved), run-
ning the BDFA could amount to computing the Bayes factor 2000×2×100 =

400, 000 times on different datasets. Clearly, if computing a Bayes factor takes
more than couple of seconds, conducting the BFDA becomes prohibitively
time consuming.

However, some insights can be gained even if the full BFDA can not be

https://shinyapps.org/apps/BFDA/


5.2. PLANNING FOR BST AND BFDA 225

run. For example, one can decrease the number of hypothetical replications
(e.g., from 1000 to 100). This will provide some information, but fewer repe-
titions decreases the precision of the Monte Carlo results, and therefore make
the results of the BFDA less informative for planning the study (A. S. Cohen,
Kane, & Kim, 2001); even so, running the BFDA with 100 replications instead
of 1000 will of course provide more information than not running it at all; re-
sults should always be interpreted taking into account the accuracy of the esti-
mates.

Another alternative is to run the BFDA only for the maximum sample size,
instead of simulating the full sequential sampling process. This drastically de-
creases computation time because the statistical analysis does not have to be
re-computed at every step of the sequential process. For example, the BFDA de-
scribed earlier would require only 2000 evaluations of the statistical test, rather
than up to 400,000. This simplified approach will not provide an estimate of
the expected sample size or of the error rates of the design. However, it will give
an indication of whether or not it is plausible that the study will terminate ear-
lier than at the maximum sample size. For example, if nearly 100 percent of the
simulations are highly informative (i.e., large Bayes factors), it is likely that the
stopping criteria will be met before the maximum sample is reached. This is a
desirable outcome in a BFDA because it shows that it is likely to obtain com-
pelling evidence with the available resources, and that it is highly plausible that
the planned experiment will not use up the available resources. If, however, the
resulting BFDA shows that even with the maximum sample size it would be
unlikely to obtain strong evidence, it might be necessary to re-think the study
design.

Of course, it is possible to skip BFDA entirely. BFDA is useful for assess-
ing whether the current study is feasible and to set expectations regarding the
study, but it is not a required step for conducting a sequential testing study, as
the interpretation of the Bayes factor remains the same regardless of the char-
acteristics of the sampling plan.

5.2.3 Run the study!
After designing the study, and optionally performing the BFDA, data collec-
tion may proceed. Typically, a study would be run using the sequential design
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that was specified prior to the data collection. However, Bayesian inference
in principle allows for continuous updating of knowledge as the evidence pro-
vided by the data accrues; strictly speaking, there is no need in Bayesian analyses
to pre-specify a sampling plan or stick to the designed sampling plan, because
the results of Bayesian analyses can be interpreted independent of the sampling
plan. However, it is recommended to be transparent about changes in the de-
sign of the study to avoid the suspicion of result hacking (Crüwell et al., 2019).

5.3 Illustration: Rule learning
In this section we illustrate the principles and practices described so far on an
example, and present the R-code that is required. The code is available on
GitHub and can be downloaded and adapted by researchers wishing to apply
the presented methods to their own research designs. To make the examples
very concrete, we use the case of rule learning in infancy as a typical develop-
mental study. We first briefly describe the rule learning paradigm and the typ-
ical hypotheses that are being tested using the paradigm. These hypotheses are
then translated to statistical tests that are analysed using BFDA.

5.3.1 Rule learning in infants
In studies of rule learning, infants are first familiarized with patterned sequences
of syllables and then tested whether they can generalize the patterns to sequences
built from novel syllables. In a seminal paper, Marcus, Vijayan, Rao, and Vish-
ton (1999) introduced this algebraic rule learning paradigm and showed that 7-
month-olds were able to do this. Infants were familiarized with sequences like
dewiwi, wejiji, lididi for two minutes. In this case, infants may learn the rule
XYY, as each of the sequences involves one syllable followed by a second sylla-
ble repeated twice. During test, infants were exposed to congruent sequences
(e.g. bapopo), in which the familiar rule or pattern was preserved, and to in-
congruent (e.g. bapoba) sequences, in which the pattern was changed, in this
case to XYX. These test sequences were composed of novel syllables. Using the
headturn paradigm (Nelson et al., 1995), infants showed more interest in incon-
gruent, i.e. novel, than congruent patterns, indicating that they had generalised
the rule. Rule learning is thought to be a fundamental ability in the acquisition
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of language and it has been studied mostly in that context Rabagliati, Ferguson,
and Lew-Williams (see the meta-analysis in 2019, for an overview of language
and non-language related rule learning studies).

The rule learning paradigm is simple and versatile enough to be used with
different types of stimuli, different age groups, and even different species. As a
result, it has been used in many follow-up studies to answer questions about the
nature of rule learning. For example, it has been shown that rule learning is not
domain specific, as infants can infer rules from e.g. visual stimuli (S. P. Johnson
et al., 2009; Saffran, Pollak, Seibel, & Shkolnik, 2007) and chords(Dawson &
Gerken, 2009) too. Rule learning is facilitated by stimuli that are meaningful,
i.e. relevant to their everyday experience, like speech (Rabagliati et al., 2019),
or multimodal stimuli (Frank, Slemmer, Marcus, & Johnson, 2009). Direct
repetition also appears to be facilitating, as the XYY pattern is learned earlier
than the XYX pattern, both with speech and visual stimuli (Gervain, Berent,
& Werker, 2012; S. P. Johnson et al., 2009). Up until now some form of alge-
braic rule learning has been shown only in a single non-human animal species,
the budgerigar (Spierings & Ten Cate, 2016). However, there are questions
about the robustness of the effect. Rabagliati et al. (2019) in a meta-analysis of
over 90 studies found an effect size (Hedges’ g) of 0.25 for 7-month-olds over-
all, an enhanced effect when they were familiarized with meaningful stimuli,
and a zero effect size when non-meaningful stimuli like tones or abstract vi-
sual objects were used. The average effect size was estimated as g = 0.25, 95%
CI = [0.09, 0.40] (Rabagliati et al., 2019). A recent study in 4 Dutch baby-
labs found no evidence for rule learning in a close replication of the original
paradigm (Geambas, u et al., 2022).

5.3.2 Rule learning BST specifications

Research question and hypothesis

The main hypothesis in rule learning studies is that looking time differs for se-
quences with a novel versus a familiar structure–or sequences that preserve ver-
sus violate the learned rule. In particular, the expectation is that there are longer
looking times to sequences with a novel structure than to sequences with famil-
iar structure. The null hypothesis states that there is no difference in looking
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time to novel and familiar trials. The alternative hypothesis states that the look-
ing times to novel trials will be longer than looking times to familiar trials. With
these specific hypotheses, we have all the elements needed to conduct a BFDA
and BST.

Statistical models that represent the hypotheses

Once we determined the main hypothesis to test, we represent it in the form
of statistical models that can be compared with a Bayes factor. The canonical
test for the current hypothesis is the t-test. As in frequentist analysis, the data
need to be prepared in the appropriate way by averaging the looking times for
the novel trials and the familiar trials (but see van Doorn, Aust, Haaf, & Wa-
genmakers, 2021). The experimental effect is then computed as the difference
between these two averages for each participant. The standardized effect size
obtained in the sample is finally computed as the mean difference score divided
by its standard deviation. This standardized effect size is the effect size of inter-
est in the analysis that we present here and its population value is denoted as
δ.

In Bayesian statistics the t-test is formulated as follows. We define the null
hypothesis for the parameter of interest that states that the true effect size is
exactly zero:

H0 : δ = 0

Under the alternative hypothesis, the effect size is allowed to be different
from zero. Similar to frequentist analysis, one needs to decide additionally
whether the effect is expected to be positive, negative, or can go into either di-
rection. This is done by assigning a prior distribution to the effect size.

There are many options on how to define the prior distribution. For situ-
ations where no previous data or knowledge is available about the size of the
effect, so-called default prior distributions were derived (Rouder, Speckman,
Sun, Morey, & Iverson, 2009) that meet general mathematical desiderata (Etz,
2018; Ly et al., 2020; Ly, Verhagen, & Wagenmakers, 2016b). These defaults are
commonly used throughout the literature as well as implemented in popular
statistical software (e.g., JASP Team, 2021; R. Morey & Rouder, 2018). For
the t-test presented in this example, the popular default prior distribution for
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Figure 5.2: Cauchy prior under the alternative hypothesis that the effect size is
positive.

the effect size is a Cauchy distribution (this distribution is equivalent to the
t-distribution with one degree of freedom):

H1 : δ ∼ Cauchy(0, 1/√2)

Since there is a clear expectation about the direction of the effect (i.e., novel
sequences have longer looking times than familiar sequences) we will use a one-
sided t-test. To achieve this, we truncate the distribution below zero, therefore
assigning zero prior probability to effect sizes that are in the opposite direction
than we expect. This truncation is the Bayesian equivalent of a one-sided test
in the frequentist paradigm. Figure 5.2 shows the resulting prior distribution.

This default prior hence formulates the alternative hypothesis as being ag-
nostic about the size of the effect and only stipulates that it is positive. Alterna-
tive specifications of the prior distribution are possible. Additional to the direc-
tion of the hypothesis, we could set a different scale of the Cauchy distribution.
Typically, researchers would use other distributions to incorporate domain-
specific knowledge about the size of the effect. Priors informed by domain-
specific knowledge usually have the advantage that they make sharper predic-
tions than the default priors, which can lead to stronger Bayes factors and thus
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more efficient sequential testing designs. It is also advisable to provide a robust-
ness analysis in the final report which shows how the conclusions would change
if different prior distributions had been used (van Doorn, van den Bergh, Böhm,
et al., 2021). However, for the purpose of BST, one needs to use a single prior
specification to allow for unambiguous evaluation of the stopping criteria. Ro-
bustness analysis would be used only after the study has been completed.

In the case of rule learning, a meta-analysis of previous studies showed
an average Hedges’ g effect size of 0.32 for studies with “meaningful” stimuli
(Rabagliati et al., 2019), so a new study in this area could assign a higher prior
plausibility to values around 0.32 (see the Bayesian Updating box). However,
Rabagliati et al. studied Hedges’ g, which is an effect size used for between-
subject comparisons. In the present example, the design is within-subjects,
where the effect size is a standardized difference score. One should be careful
about using those effect sizes interchangeably, because the two effect sizes cor-
respond only when the correlation between the two paired measurements is ex-
actly 0.5 (Dunlap, Cortina, Vaslow, & Burke, 1996; Morris & DeShon, 2002).
We re-analyzed the meta-analysis data reported by Rabagliati et al. to find that
the average correlation in previous studies is r=0.61, 95% CI = [0.47, 0.74]. This
puts the average of the within-subject effect size to about d = 0.45, 95% CI =
[0.01, 0.84] for studies in which meaningful stimuli were used. An informed
prior distribution using these results is represented by a t-distribution with a
degrees of freedom equal to 19.767, location equal to 0.443, and scale equal to
0.1962

For illustration, we conducted an additional BFDA analysis using this meta-
analytic estimate on how one could use previous evidence for informing new
studies. In the next section, we will be mainly focus on the BFDA results using
the default Cauchy prior as the alternative hypothesis. The differences between
the default and an informative prior is highlighted in Table 5.2.

Sequential testing design

After we established the main hypotheses that will be tested, the next step is to
decide on the design of the study. That is, we need to specify how the data will

2For the sake of brevity, we do not include the reanalysis in the main text. Interested readers
can refer to the Appendix A and our online materials at osf.io/wak9e/.

https://osf.io/wak9e/
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be collected, and what stopping criteria will determine the end of data collec-
tion.

The first decision that needs to be made is whether or not sequential testing
will be done in the first place. Sequential testing brings some advantages com-
pared to traditional study designs where data is collected until a pre-specified
sample size has been reached. However, we will include traditional ‘fixed n de-
signs‘ in this example as well to demonstrate how the design works compared
with the sequential testing designs.

The second decision is whether a maximum sample size should be specified.
This allows the researcher to state in advance the sample size beyond which it is
unfeasible or impractical to collect more data. In infant research, researchers are
usually strictly limited with regard to what sample sizes they can realistically col-
lect. Therefore, it is often reasonable to incorporate these resource constraints
into the stopping rule of the sequential design. In this example, we will assume
that the maximum sample size to be collected is 50 participants.

The third decision concerns specifying stopping criteria based on accumu-
lated evidence for one or another hypothesis. In the current example, we will
use the evidence thresholds BF10 = 10 and BF10 = 1/10. This means that un-
der the sequential design, the data collection will be terminated if the data are
10 times more likely under one of the hypothesis compared to the other.

There may be additional aspects of the design to consider during planning
of the study. As mentioned previously, it may not be always feasible to carry
out the data analysis after collecting data from each individual participant. In-
stead, we may conduct the analysis in batches. In this manuscript, we will con-
sider both an example where the Bayes factor is computed after each partici-
pant, and an example where the Bayes factor is computed after batches of five
participants.

The criteria that we have described here result in three study designs that
we will demonstrate in the next section. These three designs are summarised
in Table 5.1. In the present article, we use the different designs to highlight the
practical implications these design choices have on the data collection.
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Design Sequential Max. sample size BF thresholds Step size

Fixed n No 50 - -
Sequential Yes 50 BF10 = 10 or 1/10 1
Sequential in batches Yes 50 BF10 = 10 or 1/10 5

Table 5.1: Summary of different study designs illustrated in this example.

5.3.3 Bayes Factor Design Analysis

Once we determined the study design, we conduct the BFDA which will give
us information about the evidence we can expect under the selected design in
case of the fixed sampling plan, as well as the sample sizes that we may expect
to collect in case of the sequential sampling plan. This optional step helps us
to assess whether the current study design is adequate to provide conclusive
evidence to answer the research question, and whether the study is feasible to
conduct.

BFDA is a simulation-based approach for design analysis that requires some
knowledge in programming when using unconventional statistical models. For-
tunately, many of the typical statistical tests used in Psychology, as well as vari-
ety of study designs, are implemented in the R-package BFDA (Schönbrodt &
Stefan, 2018). This makes the analysis relatively straightforward, as the package
does all necessary steps of the BFDA automatically. For example, theBFDA.sim
function can be used to simulate the data, compute the corresponding Bayes
factors, and decide whether stopping criteria have been met. The function re-
peats these steps many times so that we obtain the distribution of possible out-
comes given the specified design. The simulations done for these typical de-
signs are relatively simple and time efficient, and so conducting the analysis is
a matter of only couple of minutes. However, we advise the reader to always
run the simulation with only a few repetitions at the start to determine how
long it would take to run the full analysis, and whether to run the full BFDA
or simplify the approach.

Here is an example of using the BFDA.sim function from the BFDA pack-
age:
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BFDA.sim(expected.ES = 0.45,
type = "t.paired",
prior = list(

"Cauchy",
list(

prior.location = 0,
prior.scale = sqrt(2)/2)

),
alternative = "greater",
design = "sequential",
boundary = 10,
n.min = 5,
n.max = 50,
stepsize = 1,
B = 1000)

Here we see the following arguments:

expected.ES is the expected effect size which is used for generating the data.
Under the null hypothesis, the effect size is 0. Here, the effect size under
the alternative is set to the meta-analytic point estimate of the effect size
under meaningful stimuli.

type specifies the type of test involved, in this case a paired t-test as we are
comparing within participant averages over two types of trials — familiar
and novel stimuli.

prior is the prior distribution on the effect size under the alternative hypothe-
sis. In this example, it is the Cauchy(0,

√
2/2) distribution defined earlier.

Note that this is also the default prior that would be used in this case so
the same analysis would if this argument was dropped.

alternative specifies whether the t-test is one-sided or not; in this case, we
are expecting an effect larger than 0, Hence, the alternative is specified as
greater. This results in the truncated prior distribution as shown in
Figure 5.2.
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design indicates whether sequential testing is used ("sequential") or whether
fixed n design is used ("fixed.n").

boundary specifies the evidence threshold. When the obtained Bayes factor
reaches this value, the data collection is stopped.

n.min specifies the minimum sample size.

n.max specifies the maximum sample size.

stepsize specifies how many participants are simulated between each com-
putation of the Bayes factor. Here, it is set to 1, which means that the
Bayes factor will be computed after every simulated participant. If batches
of 5 participants are collected, the number needs to be increased to 5.

B specifies the number of repetitions of the simulation procedure.

Conceptually, this call of theBFDA.simwill repeat the following steps 1000
times:

1. Simulate data from one batch of participants (here, only one participant
is in one batch), assuming an effect size δ = 0.45 and add it to the data
set.

2. Compute the Bayes factor comparing the null and alternative hypotheses
on the current data set.

3. Determine whether stopping criteria have been met (i.e., is BF larger than
10 or smaller than 1/10? Is the current sample size equal to 50?)

4. If criteria have not been met, repeat steps 1–3. If criteria have been met,
record the obtained Bayes factor and the sample size, and run a new sim-
ulation.

Specifically, this code corresponds to the "sequential" design shown in Ta-
ble 5.1. To get a complete picture of the design, we need to consider both hy-
potheses in the data simulation. Therefore, we run the same code twice with
the only difference that the expected effect size argumentexpected.ESwould
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Decision outcome

Design Simulation Prior Null Undecided Alternative Mean N

Fixed n Null Default 25 74 1 50
Informed 48 51 1 50

Alternative Default ≈ 0 33 67 50
Informed ≈ 0 22 78 50

Sequential Null Default 38 58 4 42
Informed 64 29 7 33

Alternative Default ≈ 0 21 79 30
Informed ≈ 0 12 88 26

Sequential in
batches

Null Default 34 64 2 45

Informed 60 35 5 36

Alternative Default ≈ 0 26 74 34
Informed ≈ 0 14 86 29

Table 5.2: Overview of the BFDA results. The numbers represent the frequency
(in percent) of adopting one of the three decisions (accepting null hypothe-
sis, remaining undecided, accepting alternative hypothesis) under various sce-
narios. Design = design of the sequential testing (see Table 5.1). Simulation =
whether the data were simulated under the assumption of the null hypothe-
sis (δ = 0) or an alternative hypothesis (instantiated as δ = 0.45). Prior =
Whether the default Cauchy prior was used, or the informative prior was used.

be specified as 0 in the second run of the function to generate data assuming
that the null hypothesis is true.

Next, we present the results of the BFDA for the three alternative study
designs presented in Table 5.1. The results for all designs are summarized in Ta-
ble5.2 including the contrast between using informed versus defaults priors in
each case. All code associated with the examples as well as the code for generat-
ing the figures can be accessed at osf.io/wak9e/.

Fixed n design

Let us first investigate the result of the BFDA in case one decided to use a
“traditional” fixed sample size of fifty participants. Determining the distribu-
tion of evidence assuming a particular fixed design is akin to running a tradi-

https://osf.io/wak9e/
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tional sensitivity analysis, with the difference that the Bayesian hypothesis test
can show evidence in favor of the alternative hypothesis, evidence in favor of
the null, or inconclusive evidence. When using the default priors, if the data
come from the simulation that assumes that the null hypothesis is true, about
25% of the simulated studies correctly show strong evidence for the null (i.e.,
BF01 ≤ 10). Less than 1% of the studies incorrectly show evidence for the alter-
native (BF10 ≤ 10). The rest of the studies (about 74%) remains inconclusive;
see the first row in Table 5.2 for these numbers and the corresponding numbers
when the informed is used. When using the default priors, if the data are gener-
ated under the assumption that the effect size is 0.45, about 67% of the studies
correctly show support for the alternative hypothesis. About 33% of the studies
remain inconclusive, and essentially zero studies incorrectly supports the null
hypothesis (i.e., yield BF of 1/10 or less).

Figure 5.3 shows the distribution of the Bayes factors for a fixed sample size
design of 50 participants. Clearly, in terms of error rates, or the number of
simulations resulting in misleading conclusions, this design is effective at dis-
criminating between the null and the alternative hypotheses. However, the plot
reveals an issue with the design: Many studies would lead to extremely strong
evidence (i.e., many Bayes factors would be larger than 30, with a large portion
exceeding 100). Thus, although when designing this study it was determined
that a Bayes factor of 10 would provide sufficient evidence, these simulations
reveal that with 50 subjects, the evidence is often much stronger. Therefore,
if one would be content with less conclusive results (e.g., BF = 10), the cur-
rent design potentially wastes a lot of resources by collecting data from a larger
sample than is necessary to reach the desired amount of evidence. As hinted
previously, the solution to this inefficiency is sequential testing, which is dis-
cussed next.

Bayesian sample size specification

A BFDA for fixed-n designs can answer a similar question as a frequen-
tist sensitivity analysis: What is the probability of finding positive evi-
dence under the alternative hypothesis assuming a fixed number of par-
ticipants? Hence, one may wonder whether there is a Bayesian coun-
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Figure 5.3: Distribution of Bayes factors under the fixed n design with 50 partic-
ipants. Each data point represents the Bayes factor of one simulated study after
collecting all 50 participants. The dotted lines show the Bayes factors of 1/10
and 10, indicating “strong” evidence for the null and alternative hypothesis,
respectively. The dashed line highlights a completely indifferent Bayes factor
of 1. The bottom panel shows the distribution of Bayes factors assuming that
the effect size is δ = 0.45. The top panel shows the distribution of Bayes fac-
tors under the assumption that the null hypothesis is true (i.e., δ = 0).
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terpart to frequentist sample size specification based on power analy-
ses: What is the required number of participants to have a pre-specified
probability of finding positive evidence for an effect if the effect exists?
BFDA also allows for this type of analysis.
Specifically, in a Bayesian setting, we may ask the question: What sam-
ple size is needed to get conclusive evidence for the alternative hypothesis
(e.g., BF10 > 10) with a probability of at least 80%, if the true effect size
is, say, 0.45? The answer cannot be obtained from a single fixed-n BFDA,
but can be obtained by using a series of consecutive BFDAs where sam-
ple size is iteratively increased until the formulated requirement on de-
sign characteristics is met. In the BFDA R package (Schönbrodt & Ste-
fan, 2018), this functionality can be found in the SSD function. Using
this function with our rule learning example, we esablished that at least
63 participants would be needed to obtain a ‘Bayesian power’ of 80%.
One advantage of Bayesian statistics is that it allows researchers to quan-
tify evidence in favor of the null hypothesis (Wagenmakers, Morey, &
Lee, 2016). Thus we can plan not only for sufficient power to detect an
existing effect, but also for a high probability of obtaining strong evi-
dence for the null hypothesis, if the true effect is zero. For example, a re-
searcher may aim to obtain strong evidence for the null hypothesis (i.e.,
BF01 < 1/10) with a probability of at least 60% if the rule learning effect
is in fact zero. Using the SSD function reveals that the required number
of participants in this scenario is 198 participants. It is typical that this
number is much higher than for ‘Bayesian power’ under the alternative
hypothesis because evidence for the alternative hypothesis generally ac-
cumulates faster than for the null hypothesis (V. E. Johnson & Rossell,
2010).

Sequential design

Instead of the fixed sample size design, researchers may be interested in per-
forming a sequential design, and plan it using a BFDA for sequential designs.
In our first sequential testing example, we consider a setup where a researcher
performs a Bayesian hypothesis test after each participant (starting from a min-
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imum of five participants), until a Bayes factor greater than 10 or smaller than
1/10 is encountered, or until the maximum number of participants (nmax = 50)
is reached. Again, we run this simulation under the assumption that the null
hypothesis is true (δ = 0) and under the assumption that the effect size is
δ = 0.45. Figure 5.4 shows the results of the BFDA when the default pri-
ors were used. Specifically, each line represents a separate simulated study, and
shows the accumulation of evidence (y-axis) as the data increases in size (x-
axis). Straight lines drawn at BF10 = 10 and BF10 = 1/10 represent the evi-
dence boundaries for the alternative and null hypothesis, respectively. The dots
on these lines represent a study that terminated due to reaching the boundary,
and is drawn at the sample size that was needed to obtain the required evidence.
The distribution on the right side of each plot show how many simulated stud-
ies ended because the maximum sample size was reached, rather than one of
the evidence thresholds. The distribution indicates the strength of evidence for
these studies, the colors indicate the direction of the Bayes factor at nmax = 50.

Similar to the fixed design analysis discussed earlier, we can use the table 5.2
to determine the percentage of studies that lead to correct or incorrect conclu-
sions, and the percentage of studies that remain undecided. Under the null
hypothesis, about 58% of the simulated studies remain inconclusive even af-
ter collecting the maximum number of 50 participants. Although this number
seems large, it is actually an improvement to the fixed designs, under which
74% of studies remained inconclusive. The reason for this phenomenon is that
as we accrue more data, Bayes factors (on average) drift towards the more ac-
curate hypothesis – but there is some variation due to sampling noise. This
means that some studies that would not have reached the threshold at the max-
imum sample size may cross the threshold at an earlier point in time, which
gives a slight advantage to the sequential design compared to the fixed design.
A noticeable improvement also comes for the percentage of studies that cor-
rectly support the null hypothesis, which increased from 25% under the fixed
design to about 38%. Under the assumption that the effect size is δ = 0.45,
the sequential design also performs better than the fixed n design in terms of
the error rates. About 79% of the studies reached a Bayes factor of 10 in favour
of the alternative hypothesis before the sample size of 50 was reached. About
21% of the studies terminated at the maximum sample size without reaching
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Figure 5.4: Individual simulated studies and the evidence obtained after each
participant. Each line represents a single study and the Bayes factor is plot-
ted on the y-axis after each added participant (on the x-axis). Histograms on
the bottom and top margins display the distribution of sample sizes needed to
reach evidence in favor of the null and alternative hypothesis, respectively. The
histogram on the right side shows the distribution of final Bayes factors of stud-
ies that did not reach conclusive evidence for either hypothesis by the time the
maximum sample size was reached. The top panel shows simulations under
the assumption that the null hypothesis is true, and the bottom panel shows
simulations assuming that the effect size is δ = 0.45.
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the evidence boundary.
Most importantly, we can also extract information about expected sample

sizes from the BFA for sequential designs. Remember that in sequential test-
ing, one has the opportunity to conclude the data collection early if enough ev-
idence is accumulated, instead of waiting to collect the maximum sample size.
From Figure 5.4, we can see that under the assumption that the true effect size is
δ = 0.45, the study can often be concluded much earlier than at the maximum
sample size of 50 participants, which shows that one can improve the efficiency
of the experiment by employing the sequential testing design. However, if the
data come from the null hypothesis, the benefits of the sequential design in the
current scenario are modest; the expected sample size to be collected is about
42, suggesting that under the null hypothesis one saves resources equivalent to
only 8 participants on average. On the other hand, if the true effect size is 0.45,
the average sample size at stopping point is about 30, meaning that the expecta-
tion is to save resources of about 20 participants compared to the fixed sample
size design.

Sequential design in batches

The previous section showed that by allowing the experiment to end whenever
a predefined amount of desired evidence is reached, the design becomes more
efficient. Often, data collection can be terminated much earlier than the maxi-
mum sample size of fifty participants.

However, the previous analysis assumed that the Bayes factor will be com-
puted after every single participant. In realistic scenarios, this is often not feasi-
ble; for example, participants are usually scheduled ahead of time, or are tested
in groups in a larger laboratory so that it becomes impractical to calculate the
Bayes factor sequentially after each participant. Additionally, the raw data may
need to be processed before entering it into the main analysis, which can make
it infeasible to run the analysis after every single experimental session.

However, these practical restrictions do not preclude the researcher from
conducting a sequential design. For example, the researchers may decide to
calculate the results after every week of collecting the data, and they estimate
that every week, on average, they collect about 5 participants. The sequential
analysis can then be used assuming that the Bayes factor will be not computed
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after every participant, but once every week, which would mean computing the
results approximately after every fifth participant.

In general, the efficiency of sequential designs with larger step sizes lies
somewhere between the fixed designs and a sequential designs with a step size of
one. The larger the step size, the smaller the benefits of the sequential analysis,
as there are less and less opportunities to terminate the experiment before the
maximum sample size is reached. However, even relatively large step sizes can
bring some benefits to the researcher, especially in situations where the data is
more diagnostic than expected.

Suppose that a researcher estimates that they will be able to run the analysis
after about every fifth participant. Besides that, the sequential design is run
again with a minimum sample size of five and a maximum of fifty participants.

As can be read from Table 5.2, the sequential design’s performance lies some-
where in between the fixed n design and the sequential design presented previ-
ously. If the true effect size is zero, when using the deafult priors, the BFDA
simulation results show that about 34% of studies correctly support the null
hypothesis, about 2% support the alternative hypothesis, and about 64% run
until the maximum sample size is reached. The average sample size at the stop-
ping point is 45, suggesting that if we are lucky, we may be able to conclude the
experiment earlier than depleting the whole pool of 50 participants.

Under the assumption that the effect size is 0.45, when using the default pri-
ors about 74% of the studies would correctly support the alternative hypothesis,
virtually no studies would support the null hypothesis, and about 26% of the
studies would run until the maximum sample size is reached. The average sam-
ple size at the stopping point is 34, suggesting that even without the possibility
to test the effect after every subject, it is possible to retain some advantages of
the sequential design over the fixed sample size.

Remarks on the BFDA

In this example, we conducted BFDA with three different study designs. This
demonstration shows how BFDA can be used to gain insight into a planned
study. One can run BFDA for various alternative designs to establish which
design to choose for actual data collection. For example, the present examples
demonstrated that one can increase the efficiency of the experiment by using
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sequential testing, even if computing the Bayes factor after every single partici-
pant is unfeasible.

Importantly, we were able to run the variations of BFDA because the cur-
rent example is relatively simple and the analysis can be comfortably run using
the BFDA package in a matter of a few minutes. This is not always the case.
However, it is important to keep in mind that running BFDA is an optional
step in a sequential testing study. It can provide insights when planning the
study and may help researchers to come up with better alternative designs, but
it is not necessary for interpreting a sequential testing experiment in any way.

The efficiency of the design can be improved by incorporating knowledge
about the studied phenomenon into the experiment by means of using infor-
mative priors. The main text focused on presenting the results using uninfor-
mative (default) prior to demonstrate how to use BFDA when no prior infor-
mation is available. However, in the context of the present example, it would be
possible to incorporate previous knowledge by using the meta-analytic results
from Rabagliati et al. (2019). Table 5.2 highlights the differences between BFDA
using default and informed priors. Informed priors make sharper predictions
than the default priors, which leads to more decisive Bayes factors. This leads
to decreased probability that the experiment ends up being inconclusive, and
increases the chances of reaching correct conclusion earlier than when using
default priors. The exception to this pattern is when the results from the cur-
rent experiment for some reason deviate substantially from the past estimates.
Informed priors guarantee sharper predictions, but if those predictions do not
agree with current data, it could become harder to provide strong evidence for
the correct hypothesis as the prior that makes confident but inaccurate predic-
tions will suffer a penalty. In these cases, default priors may actually outperform
informed priors.

5.3.4 Run the study and analyze the data
Once we planned the study, we may proceed with the data collection and data
analysis. Here, we demonstrate an outcome of a sequential analysis of the data
from Geambasu, van Renswoude, Visser, Raijmakers, and Levelt (2021), Study
2, a replication of a study reported by Marcus et al. (1999). Although this study
was conducted with a fixed n design with 40 participants, we can analyze the
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Figure 5.5: Screenshot of the data from (Geambasu et al., 2021)

data sequentially to show how the evidence accrued over time and illustrate
how the study might have unfolded if a sequential analysis had been adopted.

To provide a sense for the present illustration, Figure 5.5 shows the first five
rows of the data set to be analysed here, if we open it in JASP (JASP Team,
2021). Each participant (“ppt”) occupies a single row and the average looking
times for consistent and inconsistent stimuli are recorded in separate columns.

Analyzing the entire data set of 40 participants yields a Bayes factor in favor
of the alternative hypothesis of about 0.123, or equivalently, the data from all
participants are about 8.15 times more likely under the null hypothesis com-
pared to the alternative hypothesis.

To conduct the sequential analysis, the data from each participant are added
in the order they were originally tested. Figure 5.6 shows the result of the se-
quential analysis. After each participant, the Bayes factor is computed, as spec-
ified earlier, for a one-sided test with a default Cauchy prior on effect size un-
der the alternative hypothesis. Each point shows the Bayes factor obtained af-
ter each participant. In the figure, Bayes factors above 1 show evidence for the
alternative hypothesis, and Bayes factors below 1 are evidence for the null hy-
pothesis. It can be seen that the Bayes factor rapidly decreases, converging to-
wards evidence for the null hypothesis. Although the evidence for the null is
mostly moderate, there are two points (highlighted in red) where the Bayes fac-
tor crosses the bound of 1/10 - first after including participant nr. 28, and again
after including participant nr. 32. If the data were collected using sequential
design with the same criteria as outlined in this previous section, the experi-
ment would have been concluded earlier, thus saving resources of 12 partici-
pants that were tested after desired evidence threshold has been met. Note that
although the Bayes factor is above the bound after participants number 28 and
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Figure 5.6: Output of a sequential analysis.

32, it moves slightly to the other side of that bound after adding participants 29
and 33. However, it is important remember that the Bayes factor summarizes
the evidence contained in the data up to that point, and that at N=28, there is
legitimate strong evidence for H0, which is the same conclusion that we would
make (albeit with less confidence) after sampling 40 participants. By using se-
quential sampling, we arrived at the same conclusion with fewer subjects. So,
even if (due to randomness of the samples drawn), the Bayes factor slightly fluc-
tuates around the stopping threshold in a certain region of the trajectory, the
whole trajectory will tend towards the H0 threshold as the sample size grows.
Therefore, by using sequential testing we don’t need to wait until the "final"
crossing of the threshold, and can simply make our decision after the first time
it crosses.

If we analyze the data sequentially but in batches of five participants, the
obtained Bayes factors are depicted in Figure 5.7. This results in the same pat-
tern as in the previous sequential analysis, with the difference that some of the
Bayes factors are not computed. Here, it would just so happen that the Bayes
factor would not cross the evidence bounds at any point, which would mean
that whereas the sequential testing design would be able to terminate the ex-
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Figure 5.7: Output of a sequential analysis in batches of five participants.

periment earlier, the batched sequential analysis would not — eventually lead
to the same result as the fixed n design.

Researchers may wonder what steps they should take if the Bayesian hy-
pothesis test results in inconclusive evidence. From a statistical viewpoint,
adding additional observations in a sequential manner is always possible, but
resource limits might prohibit further data collection (Schönbrodt et al., 2017).
In this case, we recommend that researchers acknowledge the uncertainty with
respect to the hypotheses under test. This can be achieved by reporting the fi-
nal Bayes factor together with a cautionary note that the amount of evidence
obtained does not allow strong conclusions in favor of either hypothesis. More-
over, it is advisable to report an effect size estimate together with a credible inter-
val so as to inform the planning of future studies. Importantly, similar to non-
significant findings in frequentist testing, inconclusive Bayes factors should not
be hidden in a file drawer, as this withholds information and introduces bias
into the literature (Rothstein, Suton, & Borenstein, 2006).
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5.4 Conclusion & Discussion

In this tutorial we have outlined the methods of BST and BFDA with the aim
of providing developmental researchers with the appropriate tools to start ex-
perimenting with these methods themselves. The illustrations have shown that
the use of sequential testing results in important gains in efficiency. In the pre-
sented scenario, researchers can expect an efficiency gain of more than 40% for
a medium-sized effect size under the alternative hypothesis. Even if the effect
turns out to be a null effect, there is still a gain in efficiency of 16%. In addition,
making use of the Bayesian testing framework provides additional information
because it allows researchers to distinguish between (strong) evidence in favor
of the null hypothesis and inconclusive evidence (Altman & Bland, 1995). Mani
et al. (2021) more elaborately discuss the advantages and disadvantages of using
BST in developmental research. Here, in addition, we focused on planning
study designs prior to data collection using BFDA.

In many typical developmental studies, common statistical tests are used
such as t-tests, correlations, and regressions. For these cases, the BFDA R pack-
age can be used without further ado. Running a BFDA in those cases hence
provides researchers with information about the reasonableness of their choices
(e.g., the maximum sample size) and their chances of finding conclusive and
strong evidence. This is similarly the case for running a sequential analysis. In
many common cases, JASP suffices to run the sequential analysis repeatedly
while data collection is ongoing. We have also shown an example of running a
sequential analysis on a real data set, also highlighting the possibilities for addi-
tional robustness checks.

When researchers are planning for more complicated analyses and designs,
e.g., multi-level models, sequential analysis during data collection is still possi-
ble and advisable. As stressed throughout, the Bayes factor can be validly in-
terpreted as the strength of evidence at any point during the study and does
not rely on any prior sampling plan. This is a major difference to frequentist
null hypothesis significance testing. Running a full BFDA for these more com-
plex sequential testing designs can be computationally infeasible. Our article
discusses several potential solutions.3

3Note that for very complicated models it may be hard or impossible to compute consistent
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The BFDA that we ran in the illustration shows that although we can likely
save on running participants, there is also still some possibility that evidence
will be inconclusive, even after running 50 participants. Assuming an effect
size of 0.45, about 13% of studies would result in inconclusive evidence when
the maximum sample size is 50. This number will naturally be higher when the
effect size under study is smaller – as will often be the case in developmental
studies. One conclusion one may draw from this is that researchers need to plan
for the possibility of larger sample sizes if the desire is to arrive at conclusive
results, and for the good of science this would certainly be desirable. It will
decrease the rate of papers with inconclusive evidence and will likely contribute
to larger generalizability (see Yarkoni, 2019, for discussion of generalizability).

Planning for the possibility of larger sample sizes may not be easy. One
way to go is to aim for the type of large scale collaborative efforts that are be-
ing launched in many areas of psychology and other areas of science (Frank
et al., 2017; Moshontz et al., 2018; Primates et al., 2019). However, that may
not be practical or necessary for every study. It is important to note that the
necessity for larger sample sizes for some studies is counterbalanced by the fact
that on average smaller sample sizes will be required when using sequential test-
ing. Even so, seeking (smaller scale) collaborations with other labs to plan for
the eventuality of larger required sample size can pay off in a number of ways.
Not only will such collaboration indeed provide the opportunity to run larger
sample sizes. Such collaboration also forces the researchers involved to be very
explicit about their testing procedures and lab practices. This in turn may have
the beneficial side-effect that heterogeneity between studies is reduced and/or
that it may reveal which procedural differences turn out to be more relevant
than initially thought thereby gaining knowledge that can help increase relia-
bility of procedures and measures (Byers-Heinlein, Bergmann, & Savalei, 2021,
see discussion in).

A division of labor between labs and researchers can also be applied in cases
where experimental researchers do not feel confident in running complicated
analyses. Seeking collaborations in such cases can also benefit science at large
by optimally using the expertise and experience from each of the partners that

Bayes Factors such that for example the BF is bounded; running a BFDA can help gaining
insights into such cases if no other information about those designs is available.
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are involved. Similarly, collaborations with between experimental scientists and
computational modellers may be beneficial to both parties.

It may be thought that optional stopping rules such as applied in sequen-
tial testing as discussed here may lead to biased estimates of effect sizes. This
concern is not without its grounds. Indeed, when stopping early on in a se-
quential testing design, the effect size may be slightly overestimated relative to
the population value. Finding out under which conditions optional stopping
may lead to problematic inferences and how severe those problems are, is an
active area of research, studying the effect of different priors, model specifica-
tion and research goals (de Heide & Grünwald, 2021; Hendriksen, de Heide,
& Grünwald, 2021) and strategies to prevent potential negative side-effects of
optional stopping (Sanborn & Hills, 2014). Regardless of this, across multiple
sequential studies the overall evidence converges towards the population value.
The alternative practice of fixed sample sizes, and frequentist null-hypothesis
testing is also not without its problems. Sampling variation in that case can also
lead to an overestimation of the effect, certainly when such findings are off-set
against studies that end up in the file-drawer. The problem of biased findings
is not unique to Bayesian practice, and rather calls for more widespread repli-
cations more generally. See (Yu, Sprenger, Thomas, & Dougherty, 2014) for a
much broader discussion of the use and effects of decision heuristics in science
independent of the statistical framework one is using.

The area of application for Bayesian sequential testing and BFDA is that
of explicit hypotheses. These methods can then take care of efficiently gain-
ing evidence for each of the hypotheses under study. Oftentimes, the hypothe-
ses under study will represent a null hypothesis and an alternative hypothesis.
Psychology in general, and developmental psychology also in particular, could
benefit from having more informative hypotheses. Meaning that hypotheses
under study are more tightly coupled to theoretical considerations, a call for
stronger theories (Yarkoni, 2019) that improve generalizability. There has been
much recent discussion about the ’theory crisis’, the need for stronger theories,
and how to develop them (Borsboom, van der Maas, Dalege, Kievit, & Haig,
2021). Stronger theories however can only be built on a stronger foundation of
robust empirical findings (Eronen & Bringmann, 2021). The use of methods
proposed in this tutorial can help build such strong foundations and thereby
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build a stronger developmental psychology.

Open Practices Statement
All code associated with this article is available at osf.io/wak9e/

https://osf.io/wak9e/


Appendix

5.A Determining informed priors
In the article, main focus was given to the BFDA using the default priors. How-
ever, informed priors were used as well, highlighting that using prior informa-
tion can further improve characteristics of the design. This appendix provides
details about how was the informative prior determined. All code associated
with the analyses are available at the project’s online repository.

Effect size of interest

Setting priors for Bayesian analyses requires an understanding of the underly-
ing statistical model so that the probability distributions that represent differ-
ent hypotheses are appropriate to the meaning of the parameters of interest.

The example discussed in this article focused on a within-subject design.
In this design, each participant receives a score in two conditions. Given that
the two measurements can be correlated, the data are assumed to be generated
from the following distribution:

(X, Y ) ∼ N2

(
(µx, µy),Σ

)
, (5.3)

where (X, Y ) are the two measurements per participant, N2 is a bivariate
normal distribution with means (µx, µy) and a variance covariance matrix Σ:

Σ =

[
σ2 ρσ2

ρσ2 σ2

]
, (5.4)

where σ is the standard deviation of the measures, and ρ the correlation
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between the two measures.
To test whether the two measures have different means, the common ap-

proach it to use a paired-samples t-test. This test can be thought of as taking
the difference score between the two measurements: W = X − Y , and con-
duct a one-sample t-test to test the mean of the difference score against zero.

Under the current assumptions, the distribution of the difference score is:

X − Y = W ∼ N (µw, σw), (5.5)

where the mean µw and the standard deviation σw of the difference score
can be expressed in terms of the parameters of the distribution of X and Y :

µw = µx − µy,

σw = σ
√
2(1− ρ).

(5.6)

The within-subjects effect size in the context of a paired-samples t-test is the
standardized mean difference score:

δw =
µw

σw

=
µx − µy

σ
√

2(1− ρ)
. (5.7)

An alternative to the within-subjects effect size is the between-subjects effect
size (commonly empirically estimated using a Cohen’s d or its alternatives like
Hedges’ g), which is applicable to both within-subjects and between-subjects
designs. The population value of this effect size is defined as:

δb =
µx − µy

σ
. (5.8)

As can be seen by comparing Equations 5.7 and 5.8, the difference between
the within-subjects (δw) and between-subjects (δb) effect sizes is in the denomi-
nator: Whereas the within-subjects effect size takes into account the correlation
between the two measurements, the between-subjects effect size does not. For-
mally, the two effect sizes are related by the following equation:

δw =
δb√

2(1− ρ)
. (5.9)

When the correlation is larger than 0.5, the within subject effect size is larger
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than the between subject effect size.
In the Bayesian paired-samples t-test used in this article, the prior represent-

ing the alternative hypothesis is placed on the within-subjects effect size. We
wish to determine a prior distribution that is informed by previous empirical
evidence. Rabagliati et al. (2019) provided a meta-analysis of studies related to
the current application. However, the effect size of interest in the meta-analysis
was a between-subjects effect size, not a within subjects effect size. Therefore,
we cannot use the estimate from the original meta-analysis directly because it
is an estimate of a different effect size measure. However, all of the studies in-
cluded in the meta-analyses were actually within-subjects. Thus, it is possible
to reanalyze the data associated with the original meta-analysis to estimate the
within-subjects effect size in question.

Estimating the within-subject effect size
Data provided by Rabagliati et al. (2019) were used to estimate the within-
subjects effect size. No crucial modifications of the data were needed, as the
within-subjects effect sizes and their standard errors are easily obtainable from
test statistics (Borenstein, Hedges, Higgins, & Rothstein, 2021). The individ-
ual estimates are clustered within articles (some articles report multiple effect
sizes from multiple studies) and labs (some labs published multiple articles).
To account for this, we conduct a random effects meta-analysis.

Let dlas and selas be the sample within-subjects effect size and the standard
error of the estimate, respectively, for lab l, reported in article a, study s. The
random effects meta-analysis of the correlation coefficient can be written down
as follows:

dlas ∼ N (µlas, selas)

µlas = µ+ βl + βa + βs

βl ∼ N (0, σl)

βa ∼ N (0, σa)

βs ∼ N (0, σs)

(5.10)

The average within-subject effect size is µ.
Only subset of the studies that were labelled as presenting “meaningful”
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stimuli (Rabagliati et al., 2019), resulting in a set of 59 individual effect size esti-
mates clustered under 10 labs. A frequentist analysis using the packagemetafor
(Viechtbauer, 2010) yielded an estimate µ = 0.46, 95% CI = [0.10,0.82]. We
also ran a Bayesian meta-analysis using the JAGS software (Plummer, 2003)
while using weakly informative priors for the parameters, and arrived at an es-
timate of µ = 0.45, 95% CI = [0.01,0.84].

Determining the prior distribution using the empirical es-
timate

To conduct a BFDA analysis using an informed prior, one needs to represent
the empirical estimate in terms of some probability distribution. The easiest
way to do so would be using a Normal distribution with the mean set to the
empirical point estimate, and a variance such that 95% of its mass lies within the
confidence (or credible) intervals. In this article, we used a shifted and scaled
t-distribution instead, as the t-distribution allows better flexibility at the tails
of the distribution given the degrees of freedom parameter. The t-distribution
was fitted using maximum likelihood approach to the posterior samples from
the Bayesian analysis. The best fitting parameters were df = 19.767, location =

0.443, scale = 0.196. The resulting distribution is shown in Figure 5.8.

Figure 5.8: Distribution representing the estimate of the average within-subject
effect size obtained by the reanalysis of data from Rabagliati et al. (2019).
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The determined distribution was used in the article to contrast the results
versus the default prior. The only difference was that as in the case of the default
prior, we truncated the distribution below zero to represent a one-sided test.
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One accusation you can’t throw at me is
that I’ve always done my best.

–Alan Shearer

Chapter 6

Habituation, Part I. Design
Choices in the Infant Habituation

Paradigm: A Pre-registered
Crowd-Sourced Systematic
Review and Meta-Analysis

This chapter is a Stage I. Registered Report accepted at Infant & Child Devel-
opment and preprinted as Zaharieva, M., Kucharský, Š., Colonnesi, C., Gu, T.,
Jo, S., Luttenbacher, I., . . . Visser, I. (2022). Habituation, Part I. Design choices
in the infant habituation paradigm: A pre-registered crowd-sourced systematic
review and meta-analysis. PsyArXiv. doi: 10.31234/osf.io/bdtx9
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Abstract

Methodological variations and inconsistency in reporting practices pose consider-
able challenges to the interpretation and generalizability of outcomes derived from the
habituation paradigm - one of the most prominent methods for studying infant cog-
nition. In a systematic review, we map out experimental design choices in habituation
study samples aged 0-18 months using looking time measures. 2,853 records published
in peer-reviewed journals between 2000- 2019 were extracted from PsycInfo and Web
of Science. 781 (27.4%) papers were deemed eligible after screening (Fleiss kappa = .60,
95%, CI[.40 - .80], 6 blind raters). We adopt a collaborative, multi-lab approach for
crowd-sourced data collection involving raters from the developmental research com-
munity. In a meta-analysis, we assess the impact of habituation detection criteria on the
novelty effect size, moderated by age. Our results will inform a detailed evaluation of
experimental designs and a set of recommendations to improve research and reporting
practices in infant habituation research.

6.1 Introduction

The habituation paradigm is among the most prominent methods
for studying infant cognition (Colombo & Mitchell, 2009; Kellman
& Arterberry, 2000; Oakes, 2010) Experimental designs and proto-

cols, as well as reporting practices, vary greatly between studies. These method-
ological variations and lack of consistency in reporting practices pose consid-
erable challenges to the interpretation and generalizability of the outcomes de-
rived from habituation studies. Precisely characterizing the habituation pro-
cess is further hindered by procedural variations with unknown effects on the
outcomes (Kucharský et al., 2022). As a result, some of the basic characteris-
tics of the paradigm remain elusive, most notably concerning the factors that
determine the novelty effect (Hunter & Ames, 1988), as well as the character-
istics of the habituation process itself that affect optimal experimental design
choices (Colombo & Mitchell, 2009). In this registered report, we perform a
systematic review and meta-analysis of experimental design and reporting prac-
tices over the past 20 years of the infant habituation paradigm and weigh the
impact of - potentially arbitrary - methodological design choices on the pres-
ence and strength of the novelty effect. Before discussing the current study in
more detail, we briefly sketch out the workings of the habituation paradigm
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and its relevance to the field of infant research.

6.1.1 The Habituation Paradigm
Investigating mental processes in infancy has advanced substantially as a conse-
quence of the development of methods that indirectly quantify infants’ inter-
est in a stimulus, one of the most widely used being the habituation paradigm
(Bornstein, 1985; Fantz, 1964; Saayman, Ames, & Moffett, 1964). This method
allows researchers to infer whether infants can discriminate between two (classes
of) stimuli, by capitalizing on the idea that infants are more readily interested
and responsive towards stimuli that are novel to them, and less so towards stim-
uli that they have encountered repeatedly.

During a typical habituation procedure, infants’ behavioral or neurophysi-
ological responses towards a certain stimulus are monitored. Commonly mea-
sured responses are, for instance, sucking, looking time, head orientation, and
neurophysiology (Fennell & Werker, 2003). In this paper, we focus on looking
behavior because it is a widely measured response across infancy (Clohessy, Pos-
ner, & Rothbart, 2001; M. Johnson & Tucker, 1996; Plude, Enns, & Brodeur,
1994) that is specifically directed towards or away from a particular stimulus in
the visual environment rather than representing a general arousal state. Our
findings are nevertheless likely to generalize to other response modalities be-
cause the basic workings of the underlying habituation mechanism are sup-
posedly the same (Rankin et al., 2009).

The fundamental assumption of the habituation method is that over re-
peated presentations, an infant gradually loses interest in what is being dis-
played, which is in turn reflected in the decreasing rate, duration, and intensity
of the visual attention response (Aslin, 2007). Once response attenuation has
occurred, a recovery of attention should be observed towards any new, unfamil-
iar stimulus - that is, if the infant perceived it as such. This recovery of interest
is taken as evidence that the infant can discriminate between the novel and the
familiar stimulus (Sokolov, 1963). In this study, we define habituation as the
decreasing response to a stimulus (or a stimulus category) over repeated expo-
sure. A dishabituation response (also known as a novelty preference), we define
as the increasing response to an unfamiliar stimulus (or a stimulus category)
following successful habituation. These definitions encompass studies that use
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the habituation and dishabituation responses as a means to investigate other
cognitive phenomena such as discrimination (Streri & Pêcheux, 1986) and cat-
egory learning (Gureckis & Love, 2004; Mareschal, French, & Quinn, 2000),
among others. Procedures that yield measurable (dis- )habituation processes
thus include protocols that allow to quantify as well as directly compare ha-
bituation and dishabituation from looking responses to familiar versus novel
stimuli (e.g., familiarization procedures).

The habituation procedure is infant-friendly, versatile and relatively easy to
implement because it takes advantage of the natural tendency of infants - and
to a great extent among other species - to direct attention towards meaningful
stimuli in the environment (Fantz, 1957, 1958, 1964; Rankin et al., 2009; Saay-
man et al., 1964). In cognitive models, attention is thought to reveal steps in
information processing such as selection among competing stimuli, stimulus
representation, or comparison between the environment and contents of mem-
ory (Bornstein, Colombo, & Pauen, 2012). To this day, hundreds of habitua-
tion studies have been conducted to investigate the mental processes of infants.
Streams of research such as language learning (e.g., Bijeljac-Babic, Höhle, &
Nazzi, 2016; Byers-Heinlein et al., 2021; Fennell & Werker, 2003; Kajikawa, Fais,
Mugitani, Werker, & Amano, 2006), face perception (e.g., Anzures, Quinn,
Pascalis, Slater, & Lee, 2009; Damon, Quinn, Heron-Delaney, Lee, & Pascalis,
2016; Sakuta, Sato, Kanazawa, & Yamaguchi, 2014; Xiao et al., 2015), numerical
cognition (e.g., Brannon, 2002; Lipton & Spelke, 2003, 2004; F. Xu, Spelke, &
Goddard, 2005), rule learning (e.g., Bulf, Brenna, Valenza, Johnson, & Turati,
2015; Bulf, Johnson, & Valenza, 2011; Frank et al., 2009; Kirkham, Slemmer,
Richardson, & Johnson, 2007), emotion processing (e.g., Addabbo, Longhi,
Marchis, Tagliabue, & Turati, 2018; Brenna, Proietti, Montirosso, & Turati,
2013; Hock et al., 2017; Ichikawa, Kanazawa, & Yamaguchi, 2014), social devel-
opment (e.g. A. Henderson, Wang, Matz, & Woodward, 2013; A. Henderson &
Woodward, 2011; Kelly et al., 2007), intelligence (e.g., Kavšek, 2004; McCall &
Carriger, 1993; Slater, 1997), memory (e.g., Dupierrix, Hillairet de Boisferon,
Barbeau, & Pascalis, 2015; Jones, Pascalis, Eacott, & Herbert, 2011; Oakes &
Kovack-Lesh, 2013; Zosh, Halberda, & Feigenson, 2011), among others, were
able to make considerable progress in understanding sociocognitive develop-
ment using the habituation paradigm. Yet, best practices in designing habitua-
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tion studies are not firmly established and in concordance with methodological
and technological developments in infant research, nor is our understanding
of habituation as a cognitive process in infancy (Colombo & Mitchell, 2009;
Kucharský et al., 2022; Sirois & Mareschal, 2002).

6.1.2 Understanding Experimental Design Factors in Re-
lation to the Habituation Process

Despite a wealth of research into habituation, which factors contribute to
producing either novelty or familiarity effects is still debated (e.g., Bergmann,
Rabagliati, & Tsuji, 2019). Hunter and Ames (1988) offered a number of pro-
posals about putative factors that could influence whether a familiarity or a
novelty preference can be expected (these will be empirically assessed in the
multi-lab project Many Babies 5: manybabies.github.io/MB5). Here we
distinguish between three types of factors: 1) the design factors of the habit-
uation phase, 2) the level of habituation, determined by the habituation de-
tection criterion, and 3) age, which has shown to interact with the course and
rate of the habituation process (Colombo, 2002; Colombo, Mitchell, O’Brien,
& Horowitz, 1987; Colombo & Mitchell, 2009; Colombo, Shaddy, Richman,
Maikranz, & Blaga, 2004; Hood et al., 1996; Slater, Brown, Mattock, & Born-
stein, 1996). These factors are discussed in turn, after we briefly cover the goals
researchers typically have with the habituation phase of the experiment.

Habituation/dishabituation procedures here are considered those involv-
ing 1) trials presenting the same stimulus/i sequentially during a training phase,
and 2) test trials presenting a novel stimulus and the familiar. The goal of the
habituation phase is that infants become less responsive towards a particular
set of stimuli without disengaging from the task altogether due to fussiness or
distress, for instance. The necessary balance between these two design demands
makes optimal design choices important but very complex and context-specific.
Typically, habituation studies make use of some criterion to determine whether
infants have indeed arrived at a state of habituation - these criteria are discussed
below. The application of any criterion suffers from false positives (i.e., reach-
ing the criterion without being habituated) and (false) negatives (i.e., not reach-
ing the criterion before getting fussy or distressed), and a well-performing cri-
terion should reliably discriminate between the looking time distributions of

https://manybabies.github.io/MB5
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the infants who did and did not habituate. A habituation criterion that sys-
tematically yields small effect sizes (i.e., subtle differences in the looking times
towards the novel versus the familiar stimuli) bears a higher risk of false posi-
tives and false negatives - especially in combination with other design factors
that diminish the reliability of the measurement - because the looking time dis-
tributions of habituators and non-habituators in the sample will overlap more
strongly. A meta-analytic approach is thus especially suitable for quantifying
the relationship between habituation criteria and the effect sizes they tend to
produce, while keeping the effect of other design factors fixed across infant ha-
bituation studies.

Whereas most studies anticipate a novelty preference during the post habit-
uation (i.e„ test) phase, some report familiarity preferences (e.g., Fiser & Aslin,
2002; S. P. Johnson et al., 2009). The goal of the habituation phase design, how-
ever, is to maximize the likelihood of completing the habituation process - man-
ifested as a novelty preference at the post habituation phase (Hunter, Ames, &
Koopman, 1983; Hunter & Ames, 1988; Oakes, 2010). Thus, studies reporting
on familiarity preferences likely employ design practices that tap into an earlier
stage of the habituation process (Sirois & Mareschal, 2002). Below we discuss
some of the design choices encountered in habituation studies.

6.1.3 Structural Design Factors

A typical habituation study involves the subsequent presentation of trials of
one type - the to-be habituated stimulus/i, followed by a testing phase where
looking times to novel and familiar stimuli are contrasted. Both novel and fa-
miliar trials need to be presented at post- habituation in order to assess the
dishabituation effect (Oakes, 2010) because presenting only novel trials at post
habituation may be, at least in part, affected by a regression to the mean (Ash-
mead & Davis, 1996; Dannemiller, 1984). Major design choices regarding the
structure of the habituation task thus are:

1. the minimum and maximum duration of each trial,

2. the minimum and maximum number of trials that each infant is exposed
to,
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3. the number and order of test trials (familiar versus novel first, random
versus blocked),

4. the number of trials to present before initiating the post-habituation
phase (also covered in the discussion of habituation detection criteria be-
low).

6.1.4 Stimulus Characteristics

A crucial determinant of looking times is the information value that the stimuli
presented as novel and familiar carry (Kidd, Piantadosi, & Aslin, 2012; Richards,
2010). In this study, the focus is on structural factors of the habituation paradigm
and we will hence leave factors such as stimulus type and complexity aside - also
because these are hard to quantify and compare across a large set of studies. By
abstracting over between-study variation in stimulus type and complexity, we
are able to include a very large number of studies rather than constraining our-
selves to a subset of studies using comparable stimuli. To provide a starting
point for future investigations aiming to address the relation between stimu-
lus characteristics and habituation performance, we gather superficial descrip-
tives on the variability of stimulus characteristics such as stimulus modality
and static versus dynamic presentation, as well as the page numbers on which
images and schematics of the stimulus displays were reported in the original
manuscripts so that these can be compiled into a database.

6.1.5 Looking Time Detection Methods

Another important factor pertaining to the precision and reproducibility of in-
fant looking times obtained from habituation experiments is the looking time
detection method. Earlier research using looking measures has relied on man-
ual coding techniques (Aslin & McMurray, 2004; Oakes, 2012), in which at
least one but preferably multiple raters record the infant’s looking behavior ei-
ther online, during the experiment, and/or offline from a video recording.

Recent advances in eye-tracking are becoming increasingly more prevalent
in infant research, making looking time recordings automated, objective, and
substantially more spatially and temporally precise (Aslin & McMurray, 2004;
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Gredebäck, Johnson, & von Hofsten, 2009; Hunnius, 2007). Despite consid-
erable perks, however, fully automated scripts are still not reliably implemented
across habituation procedures (e.g., Cong et al., 2019; Oakes, 2012). A potential
drawback of automated methods such as eye-tracking is that obtaining a signal
of sufficient quality can be challenging, especially with young infants, which
could lead to higher experimental attrition than what is typically observed with
manual coding techniques.1

Habituation procedures that lead to higher experimental attrition due to
fussiness can systematically bias samples (Slaughter & Suddendorf, 2007) and
are therefore less advisable. Using manual looking detection methods, mean at-
trition rates (overall and due to fussiness) estimated from 143 habituation stud-
ies have been reported at 22.6% and 14.1%, respectively (Slaughter & Sudden-
dorf, 2007). In contrast, a recent application of an automated face analysis tool
to measure the looking times of 5 to 8-month-old infants from video footage
yielded about 30% missing data relative to manually coded frames (Chouinard,
Scott, & Cusack, 2019). To date, we are not aware of any systematic compar-
isons between eye-tracking and manual coding techniques in infant (habitu-
ation) samples; hence, we provide descriptives on current practices regarding
the degree of automation in habituation experiments (such as looking time de-
tection and stimulus presentation methods) and their relation to experimental
attrition rate, as well as the strength of the novelty effect.

6.1.6 Habituation Detection Criteria

The single most important (and often discussed!) design factor is the use of
a habituation criterion (Oakes, 2010). The logic of the habituation paradigm
is that a decrease in interest by the infant signals that they have somehow pro-
cessed the stimulus sufficiently to be able to discriminate it from other stimuli.
The purpose of a habituation detection criterion is to then determine when
a significant loss of interest has occurred in the infant such that the post- ha-

1Looking time measures are further sensitive to the specific data parsing algorithms and in-
dividual differences in data quality (R. Hessels, Andersson, Hooge, Nyström, & Kemner, 2015;
R. Hessels & Hooge, 2019; Wass, Forssman, & Leppänen, 2014), though these issues are contin-
uously being addressed (R. Hessels & Hooge, 2019; Leppänen, Forssman, Kaatiala, Yrttiaho,
& Wass, 2015; van Renswoude et al., 2018; Wass, Smith, & Johnson, 2013).
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bituation phase of the experiment can be initiated. A number of criteria have
been applied throughout the literature that we broadly group under decre-
ment, fixed, and model-based criteria.

Decrement Criteria

Probably the most commonly applied class of criteria are the decrement criteria
(Horowitz, Paden, Bhana, Aitchison, & Self, 1972), which detect habituation
when the ‘final looking time’ ‘decreases’ below a certain percentage of the ‘base-
line looking time’. A number of choices can be made in applying this criterion.
First, the ‘baseline looking time’ can be defined as the looking time on the first
trial or as an average of the first few trials; a common choice is to average across
the 3 initial trials (Ashmead & Davis, 1996; Oakes, 2010) although other num-
bers certainly occur (Domsch, Lohaus, & Thomas, 2009). Similarly, the ‘final
looking time’ is defined either as the looking time at the last trial or an aver-
age across a set of recent trials (Oakes, 2010). The ‘decrease’ in looking time
is frequently set at a 50% decrease from the baseline to the final looking times
(Ashmead & Davis, 1996; L. B. Cohen, 2004), but other percentages occur as
well (e.g., Flom & Pick, 2012). Specifying these three variables already makes
up for a large variability in the criteria being applied. One of our goals here
is to report on how commonly different versions of the decrement criterion
are encountered and what the consequences for the magnitude of the reported
novelty effects are.

Yet another variant of the decrement criterion worth mentioning uses a
similar definition of the looking time decrease and the final looking time but an
alternative definition for the baseline looking time. Rather than the initial look-
ing time, the maximum looking time (also referred to as the peak look) serves
for calculating the percentage decrease from the final looking time. The reason-
ing here is that an infant’s interest towards the stimulus can show an increase
preceding the typical looking time decline pattern (Gilmore & Thomas, 2002;
Hunter & Ames, 1988). Similarly to the initial and final looking times, the max-
imum looking time can be derived as an average across a single trial or a set of
peak look trials (Colombo & Mitchell, 1990, discuss this variant). Another vari-
ation is to apply the criterion on the average looking time accumulated across
all previous trials in the habituation phase.
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Fixed Criteria

Under fixed criteria fall all procedures that require all infants to accrue a fixed
number of trials or a fixed looking time before the testing phase can be initi-
ated. Studies using fixed criteria are often referred to as familiarization studies,
but for our purposes can still be considered habituation paradigms if a nov-
elty effect is expected in the post habituation phase (e.g., Schlingloff, Csibra, &
Tatone, 2020).

Model-Based Criteria

Other criteria for determining whether and when infants have habituated have
been proposed too but are seldomly used. In particular, several authors pro-
posed to substitute the classic decrement and fixed criteria with model-based
criteria (Ashmead & Davis, 1996; Thomas & Gilmore, 2004). The authors de-
fined mathematical models of the ideal habituation curve and proposed to use
this to estimate when infants have habituated. Beyond reporting on the fre-
quency of use, it is outside the scope of the current paper to discuss the appli-
cation of these approaches (which is done in detail by Kucharský et al., 2022).

Relevance of Habituation Detection Criteria to the Novelty Effect and
Attrition in Studies

Infants who have not fully habituated exhibit a familiarity preference (Hunter
& Ames, 1988; Roder, Bushnell, & Sasseville, 2000; Rose, Gottfried, Melloy-
Carminar, & Bridger, 1982; Sirois & Mareschal, 2002) and therefore contami-
nate the overall novelty effect if included in the analysis. In an often-cited paper,
Oakes (2010) suggests several practices regarding the stringency of the habitu-
ation detection criterion, the use of sliding over fixed windows, and the max-
imum number of trials, among others, that are all thought to maximize the
number of truly habituated infants in the analysis. Specifically, Oakes (2010)
advises the use of a stringent criterion, operationalized as the 50% decrement
criterion applied on a sliding window of three trials. She further proposes that
1) criteria requiring a larger decrement from the initial looking times are thought
to yield larger effect sizes, though this relationship should be non-linear because
criteria that are too strict would result in more infants who did habituate but
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failed to reach the criterion (i.e., false negatives), 2) using sliding over fixed win-
dows would result in lower attrition and false negatives because they pinpoint
more precisely the timing of reaching the habituation criterion, a lower number
of maximum trials would bear a lower chance of attrition due to fussiness over-
all and a lower risk of the infant reaching the habituation criterion by chance.
One of our goals is to assess whether these recommendations are indeed borne
out by evidence.

6.1.7 Crowd-Sourcing as a Data Extraction Approach for
Review Papers in Infant Research

Over the past decades, the importance and utility of large-scale collaborative ef-
forts have gained increasing recognition across scientific disciplines, including
infant studies (Frank et al., 2017) - a field of research that is frequently con-
fronted with the challenge of answering research questions in underpowered
samples (Bergmann et al., 2018). This has inspired efforts such as ManyBa-
bies (manybabies.github.io; Byers-Heinlein et al., 2020) and MetaLab
(langcog.github.io/metalab; Gasparini et al., 2021; Tsuji, Bergmann, &
Cristia, 2014; Tsuji et al., 2017) that aim to answer substantive questions with a
greater degree of certainty. Whereas ManyBabies focuses on multi-lab replica-
tion studies, MetaLab offers repositories, templates, and tools for community-
augmented systematic reviews and meta- analyses on central research themes in
developmental linguistics and psychology.

Despite that a great body of empirical work using the habituation paradigm
has been accumulated, very limited resources have been dedicated to help re-
searchers make informed decisions about features of the experimental design
that would allow them to assess the substantive research question at hand. Re-
view papers typically aim at answering a substantive question and thus focus on
a narrow, homogenous subset of literature. In contrast, a large body of litera-
ture needs to be taken into account to evaluate procedural and domain-specific
variations across multiple disciplines that rely on the same phenomenon. Us-
ing crowd-sourcing as a general approach to review papers can greatly improve
the replicability and generalizability of infant studies by allowing the system-
atic synthesis, meta-analysis, and updating of a much larger body of literature
than what is typically feasible within individual research groups with localized

https://manybabies.github.io
https://langcog.github.io/metalab
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expertise. Here we outline and implement a crowd-sourcing data extraction
workflow to a large dataset of infant habituation studies with the hope that
others can adapt and build upon it. Similar crowd-sourced data extraction ap-
proaches for systematic reviews and meta-analyses have been applied to gene
expression data in biomedical sciences (Mortensen, Adam, Trikalinos, Kraska,
& Wallace, 2017; Strang & Simmons, 2018) and can be further applied to other
comparable problems involving some sort of manual data extraction (e.g., cor-
pus data).

6.2 The Current Study: Systematic Review &
Meta-analysis

In a systematic review, we map out experimental design choices used in peer-
reviewed habituation studies published in the period 2000-2019, including —
but not limited to — the criteria applied to determine whether habituation has
taken place. This part of the study can be considered a scoping review as it
sets out to examine the range and nature of research activity to its fullest extent
(Arksey & O’Malley, 2005). In a follow up meta-analysis, we assess how cur-
rent experimental design practices in habituation studies relate to the research
outcomes, with a specific focus on the association of these practices with 1) at-
trition rates and 2) the size of the novelty effect. Because the evaluation of study
design choices is the central goal of this paper, certain features of the critical ap-
praisal process (e.g., risk of bias assessment) common to systematic reviews and
meta-analyses are postponed until after data extraction. To increase the relia-
bility of the results, we use a crowd-sourced workflow in which raters willing
to contribute to the data extraction process are recruited from the wider com-
munity of developmental researchers and each paper is randomly assigned for
blind data extraction to at least two raters who subsequently discuss and resolve
coding disagreements. Based on the descriptive (scoping), systematic review,
and meta-analytic goals formulated below, we devise a set of recommendations
for habituation studies that aim to provide researchers with an empirical base
for designing their experiments, and to improve reporting standards.
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6.2.1 Descriptive Goals & Hypotheses

In the descriptive analysis, we report on the distributions of current experimen-
tal design practices with regard to stimulus characteristics, the habituation task
structure, presentation and response detection methods, and evaluate the ex-
tent to which the recommendations regarding habituation detection criteria
and trial number proposed by Oakes (2010) are implemented.

Further, we provide an indication of the general data quality among the
habituation studies included past the screening phase, such as descriptives on
dropout rates and on inter-rater reliabilities and blind coding practices for the
studies using manual coding of looking time.

6.2.2 Analyses of Attrition Rates: Goals & Hypotheses

Oakes (2010) suggests that more stringent habituation criteria will lead to fewer
“habituators”, but failing to exclude “non-habituators” may compromise the
robustness of the novelty effects. Following the reasoning that habituation pro-
tocols aim to maximize the proportion of infants that reach habituation from
the total number of infants included at the post- habituation phase (Hunter
& Ames, 1988; Oakes, 2010), we evaluate empirically which experimental ha-
bituation design choices predict attrition caused by failure to meet habituation
criteria. More stringent experimental designs, however, may also lead to higher
experimental attrition (e.g., due to fussiness, etc.) which affects data quality.
Thus, we need to evaluate which experimental design choices predict experi-
mental attrition separately from habituation attrition - whereas the interpre-
tation of habituation attrition is somewhat ambiguous because lower habitu-
ation attrition rates can presumably produce smaller novelty effects, minimiz-
ing experimental attrition is desirable in all measurement contexts. Figure 6.1
summarizes the relation among the types of attrition we analyze, highlighting
that habituation attrition needs to be interpreted in tandem with the size of the
novelty effect.

As discussed earlier, automatic response detection methods hold the
promise to maximize measurement precision and the reproducibility of results,
but whether their use introduces higher experimental attrition is unclear. We
therefore compare the experimental attrition and attrition due to failed habitu-
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Figure 6.1: Breakdown of Overall Experimental Attrition Rate.

ation as a function of the response detection method: eye-tracking versus man-
ual coding.

6.2.3 Meta-Analytic Goals & Hypotheses
In the meta-analysis, we focus on the relation between habituation criteria and
the magnitude and direction of the effect size. Following the logic that if the
habituation procedure is successfully implemented, novelty should be expected
(Hunter et al., 1983), we ask three main questions:

1. What is the average size of the novelty effect during the post-habituation
phase?

2. How are detection criteria related to the strength of the novelty effect?

3. How is age related to the strength of the novelty effect?

The specific hypotheses and statistical tests designed to answer these ques-
tions are summarized in Appendix A and under Modeling in the Results sec-
tion. We compare across variants of percentage decrement versus fixed-type
criteria used in habituation studies in predicting the presence and magnitude
of the novelty effect as a function of age. and then zoom in on the evalua-
tion of specific criteria. Variation in the sensory modality (visual, auditory,
visual-auditory) in which the habituation stimuli were presented, as well as
whether the habituation stimuli were presented statically versus dynamically
will be incorporated as nuisance variables in order to control for between-study
differences. Further, as our definition of habituation is relatively inclusive and
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will result in a pool of studies that test other phenomena than a simple nov-
elty/familiarity preference, we add a nuisance variable which codes whether or
not the stimulus in the post-habituation phase is identical, or of the same type
or category to the stimulus shown during the post-habituation phase. This al-
lows us to distinguish between simple habituation studies and studies that also
tap into further cognitive phenomena (e.g., categorization).

6.3 Method

6.3.1 Systematic Search

Search Strategy & Information Sources

The search strategy and syntax were devised in consultation with a librarian.
We searched for peer-reviewed papers published in the period 2000-2019 on
the topic of habituation in infancy (database-defined as 0-23 months), either
in combination with a mention of a looking behavior response or experimen-
tal study design to reduce noise in our results. A recency bias is introduced by
the time limits, which is acceptable for our study purposes to map out current
research practices. Because the search strategy aimed to maximize the represen-
tativeness of the retrieved records, the systematic search was performed across
two major databases in the field of psychology - PsycINFO and Web of Science,
expecting that the majority of developmental science disciplines employing the
habituation paradigm in human infants are to be found there.

The database searches were performed on May 21, 2020. The search syntax
is available under Appendix B and online on the project’s Open Science Frame-
work (OSF) repository (osf.io/cqvru). Out of 3,858 results from the system-
atic search, 1,005 papers were manually removed in Zotero (v5.0.89; Ahmed &
Al Dhubaib, 2011): 996 duplicates, 2 retracted papers, 7 “early access” papers.
To update the search results with more recently published papers, we will rerun
the same search once more immediately before the start of the data collection
stage. The records of “early access” papers will be screened at this stage too in
order to add the corresponding volume/issue details.

https://osf.io/cqvru
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Study Selection & Eligibility Criteria

After de-duplication, the titles and abstracts of the remaining 2,853 papers were
screened simultaneously for relevance by 6 blind raters (inter-rater reliability
Fleiss’κ= .60, 95% CI = [.40, .80]) using the systematic review web application
Rayyan (Ouzzani, Hammady, Fedorowicz, & Elmagarmid, 2016). To maximize
consistency among raters during the screening process, articles were excluded
in a hierarchical manner following the exclusion reason order provided in Fig-
ure 6.2.

We focused on including records describing original data on typical devel-
opment. We further limit the scope of our study to 1) designs in which habitua-
tion is at least indirectly measurable or measured (e.g., measuring looking times
on repeating trials), and 2) dishabituation is measurable (i.e., looking times
toward the familiar stimulus/i in the post-habituation phase can be directly
compared to looking times toward the novel stimulus/i in the post-habituation
phase, as well as toward the familiar stimulus/i in the habituation phase; visual
paired comparison and head turn preference study designs are thus excluded).
Due to inconsistent use of terminology1, researchers may occasionally report
using a familiarization paradigm whereas a habituation paradigm is actually be-
ing used. To increase the number of relevant habituation studies in our sample,
records reporting on familiarization protocols were included as long as 1) more
than one familiarization trials were presented during the habituation (pre-test)
phase, and 2) novel stimuli were presented in the post-habituation (test) phase.
During data extraction, the portion of papers in which researchers had an a pri-
ori hypothesis for a familiarity preference (and hence likely designed the pro-
cedure to target an earlier stage of the habituation process) will be excluded.
Habituation protocols presenting tactile stimulation as the habituation stim-
uli were excluded because such protocols are very unlikely to elicit and measure
changes in the infants’ looking behavior responses that are comparable to those
towards habituation stimuli in other modalities.

To maximize the amount of relevant search results, we added sev-
eral synonymous key terms that are often used in the context of habitu-
ation/dishabituation procedures (e.g., discrimination, familiarization, visual
preference, etc.). Nevertheless, studies that rely on habituation/dishabituation
designs but do not explicitly mention “habituation” or any of the related key
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Figure 6.2: Study Identification Stages at Stage I Registered Report Outlined
in the PRISMA Flow Diagram.
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terms are omitted in our results. Studies using a head-preference to infer
whether infants have habituated were also excluded. 781 (27.4%) papers de-
scribing original data from habituation studies using looking behavior mea-
sures in infants between 0 and 18 months were selected for data extraction. The
PRISMA flow chart (Figure 6.2) outlines the number of papers at each step of
the screening process.

6.3.2 Reporting Guidelines

Here we use the PRISMA 2020 (Page et al., 2021) and the NIRO (non-interventional,
reproducible, and open systematic reviews; Topor et al., 2020) reporting guide-
lines for systematic reviews.

6.3.3 Developing the Coding Scheme

Prior to pre-registering this study, we conducted a feasibility pilot study that
aimed to 1) select the set of variables on which data are extracted for our analy-
ses, 2) define a variable coding scheme, and 3) devise a procedure for coding the
data. Throughout, we were assessing the reliability of the coding to identify and
resolve problems with the current coding. The initial feasibility study followed
an iterative procedure. First, an initial list of variables that were coded and their
definitions was implemented in a spreadsheet. Then, a random set of articles
were selected and distributed among the authors of this study for initial cod-
ing. During this stage, the coders were able to communicate and exchange their
thoughts on the coding and note down issues that were encountered (e.g., a
missing level in a categorical variable). A new coding sheet was developed based
on the initial experiences. Then, a set of 70 articles identified in the screening as
relevant was distributed among seven raters such that each article was rated by
at least three raters (this resulted in each rater being assigned 30 articles). The
seven raters coded the articles independently to assess the reliability of the cod-
ing on all selected variables. Following the reliability results, additional changes
were made to the coding scheme to standardize the data extraction of multiple
experiments, experimental conditions, or age groups reported in the same pa-
per, and the distinction between various habituation criteria, as well as intro-
ducing data input validation to minimize reporting errors. During this stage of
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the project, we developed the coding manual following the PRISMA-P guide-
lines for systematic review and meta-analysis protocols (Moher et al., 2015) and
prepared an online project for crowd-sourced data collection described below.

6.3.4 Crowd-sourced Data Collection

Data extraction from all papers included past the screening stage will be done
using crowd-sourcing. Specifically, we will attract collaborators through de-
velopmental research mailing lists (e.g., the Cognitive Developmental Society
(CDS), the International Congress of Infant Studies, and the ManyBabies mail-
ing lists), inviting them to contribute to the data extraction as raters. Raters
who subscribe to help with coding the articles will be invited to a Slack workspace
for faster communication, and will receive further instructions with the data
extraction workflow. We will employ data validation and provide coders with
a coding manual to maintain the quality of the coding reliability, keeping the
data organized and clean. Raters will be included as co-authors in the stage II
report.

Use of sysrev

Sysrev (sysrev.com) is an online platform that facilitates the systematic re-
views of

documents with multiple contributors. Articles identified in the screening
stage will be uploaded to the sysrev project as .pdf files. Contributing raters
will be required to create a (free) account on sysrev to log in. Sysrev will then au-
tomatically present the raters with articles that are not yet coded by more than
one other rater. Raters will then proceed with coding the article directly on the
sysrev platform. To limit human-error and ambiguity in the data extraction,
we have implemented, where applicable: (1) multiple-choice items, (2) data val-
idation checks that request the user to provide valid variable values whenever
the input does not match the expected (e.g., checking whether user-entered val-
ues for numeric variables are indeed numeric), (3) the possibility to specify that
data on the item is missing. Sysrev keeps the review in a database from which
the data can be extracted in various standard formats.

https://sysrev.com
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Maintaining Reliability

To maximize inter-rater reliability, raters are provided with 1) a coding man-
ual with instructions on how to extract information on the data items (in-
cluding examples of edge-cases identified during the pilot stage) and how to
resolve disagreements with other raters, 2) a separate sysrev project for train-
ing, containing five papers coded by consensus to help raters get acquainted
with the data extraction process while using the coding manual. Upon joining
the project, raters will be given access to the training and data collection sysrev
projects along with the project’s OSF repository containing the coding manual
and the pdf’s of the five training papers with the data extraction process an-
notated. The coding process will be performed incrementally to maximize the
number of raters per article. The data will be subsampled by publication date
in 5-year batches, prioritizing more recent reports because evaluating current
practices is our primary focus. This results in the following record distribu-
tion: 188 records for 2015-2020; 230 for 2010-2015; 194 for 2005-2010; 169 for
2000-2005. Depending on the availability of contributing raters, we will deter-
mine whether each paper will be coded by at least two or at least three raters in
the data collection sysrev project, and whether we let sysrev assign new raters
with papers that have been already coded by at least one or two other raters
respectively. This way, we hope to further maximize the number of raters per
paper while making sure that raters coding the same papers are involved in the
project at approximately the same time.

After completing the blind coding in the current batch, the data will be
downloaded and analyzed for inter-rater agreement and specific disagreements.
After the results are known, raters will be asked to resolve any disagreements
with other raters by communicating via Slack or otherwise. For data items on
which consensus is not reached, raters will inform the project coordinators,
who will assign an additional coder to that article. The final value will be taken
on a majority vote basis. If the disagreement could not be resolved even then
(e.g., when the vote count is 1-1-1 for three alternative options), the project coor-
dinators will then take the final decision on how to resolve the coding. At stage
II, we will report on inter-rater reliability metrics, the variables on which dis-
agreements arose, and the number of disagreements that required resolution by
project coordinators. The analysis of inter-rater agreement after each batch will
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be reported in the supplementary material, alongside an exploratory analysis
studying whether the inter-rater reliability increased with increasing experience
of the raters, providing some additional insights into the novel methodology of
crowd-sourced review.

Recovering Missing Effect Size Information

The author(s) of studies for which essential data for computing the effect size is
missing will be contacted. By failure to recover these data prior to initiating the
meta-analysis, the effect size variables for these studies will be treated as missing.

6.3.5 Analysis Plan

The overview of the research questions, hypotheses, statistical analyses, and in-
terpretation is provided in Appendix A.

Dependent and Independent Variables

An overview of the dependent and independent variables is provided separately
for the descriptives (Table 1), and the meta-analysis and analyses of attrition
rates (Table 2). The variables either overlap with or are composites of data items
used for data collection in sysrev.

Descriptive Analyses

Before conducting any inferential statistics, the report will provide descriptive
statistics and plots for all variables listed in Table 1. Categorical variables will be
summarized in frequency tables, and continuous variables via summary statis-
tics. These will be used to describe the typical trends and practices in habitua-
tion studies, with a focus on habituation criteria and their variations. Descrip-
tive summaries will be also provided on the variability of experimental attrition
rate (overall, due to fussiness, versus other causes lumped together), as well as
the attrition rate due to a failed habituation phase (i.e., the infants excluded due
to not meeting the habituation criterion). These summaries will be presented
overall, as well as separately for distinct categories of presentation mode and
looking time detection method.
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Analyses of Attrition Rates

Some design choices may affect data quality. The current study focuses only on
a small portion of possible data quality issues that may arise in infants research
in general, and habituation experiments in particular (see Appendix A). Specif-
ically, we will investigate whether there is any relationship between various de-
sign choices and the experimental attrition rate (i.e., whether there are any de-
signs that are associated with fewer drop-outs). To this end, a binomial regres-
sion will be used with predictors corresponding to the degree of automation in
the experiment: 1) presentation mode, 2) looking time detection method, and
other variables such as: 3) stopping rule, 4) the maximum number of habit-
uation trials) stimulus modality, and 6) average age, and a dependent variable
“N drop-out total” out of “original sample N”. Coefficients associated with a
p-value less than 0.01 will be considered as statistically significant.

The attrition rate due to a failed habituation phase will be modeled with
the same binomial regression, but with “N drop-out habituation” as the de-
pendent variable. A Bayesian binomial regression will be used as a robustness
check.

Whereas experimental attrition is generally undesirable, it is expected that
a certain level of habituation attrition can lead to more robust results (Oakes,
2010). Therefore, while the desired outcome for the experimental attrition is
to pinpoint which practices are related to lower attrition rates, factors related
to the habituation attrition rates may need to be interpreted with the results of
the meta-analytic results on the effect sizes (see below).

6.3.6 Meta-Analysis
Calculating Effect Sizes from the Extracted Statistics

The primary meta-analysis is based on the subset of studies that performed a
comparison between novel and familiar stimuli in a within-subject design. The
effect size of interest is the within-subject standardized mean difference (J. Co-
hen, 1988) - an effect size that reflects the standardized effect per participant,
instead of the standardized difference between two measurements such as the
more traditional Cohen’s d (Dunlap et al., 1996; Morris & DeShon, 2002, see
Section 6.3.6). This decision is based on the fact that the majority of studies use
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a within-subject design to increase the power for detecting an effect, and that
the novelty-familiarity preference is typically thought of as the average looking
time difference between novel and familiar stimuli within the same individual,
rather than the average difference between novel and familiar stimuli between
participants.

The effect size of interest will be computed from the t-statistic and the as-
sociated degrees of freedom df as follows:

dz =
t

df + 1
(6.1)

The standard error of the effect size will be computed using the equation
A1 from Morris and DeShon (2002):

sed =

√
df/(df−2)

n
(1 + nd2)− d2

c(df)2
(6.2)

where c(df) = 1 − 3/(4df−1). The df in both equations is equal to n − 1,
wheren is the number of participants in the study. When anF -test is reported,
the F -statistic will be converted to a t-statistic before converting it into the ef-
fect size using the formulas above.

Assessing Publication Bias

Publication bias will be assessed using standard procedures, as well as model-
ing approaches. Before analyzing the data using a meta-analysis, we will visu-
alize the relationship between the effect size and standard error using a funnel
plot. Further, we will compute the Bayesian Kendall’s rank correlation test (van
Doorn, Ly, Marsman, & Wagenmakers, 2018, 2019) to assess whether the stan-
dard errors and effect sizes correlate with each other. In case the Bayes factor
favors the null hypothesis by at least a factor of three, we will conclude that
there is low risk of publication bias. In case that the Bayes factor favors the al-
ternative hypothesis by at least a factor of three, we will conclude that there is
high risk of publication bias. We will also compute the Egger’s test to assess the
robustness of the correlation result. Additional analyses such as PET-PEESE
meta- analysis selection models and robust meta-analysis (Maier, Bartoš, & Wa-
genmakers, 2020) will be run as exploratory analyses in case of doubt over the
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robustness of the results against publication bias. In case of a high risk of publi-
cation bias, the meta-analytic models described in the Modeling section below
will be limited. The models will be run anyway, but the results will be included
only in the Supplementary materials and no conclusions will be drawn from
these models. Instead, selection models and robust meta-analyses will be inter-
preted in the main text as exploratory analyses.

Modeling

Studies or conditions for which authors expected familiarity preference or a
null result will be excluded from the primary analysis. First, fixed effects meta-
analysis and random effect meta-analysis will be run to determine the average ef-
fect size of the novelty effect, the choice of fixed or random effects will be based
on the omnibus test for heterogeneity. However, the primary meta-analysis will
be a frequentist meta-regression. The variables used for predicting the size of
the effect will be: 1) average age of the sample and 2) the stopping rule (dummy
coded; fixed number of trials and fixed looking time are combined into one
category, all three decrement criteria are combined into another category, and
“other” with “model-based” criteria will be combined into the “rest” category).
As nuisance variables, 1) stimulus modality (dummy coded), 2) presentation
mode (dummy coded), and 3) identical stimulus (dummy coded) will be in-
cluded in the model. The identical stimulus variable is included to distinguish
studies whose focus is more constrained on the phenomenon of habituation by
presenting exactly identical stimulus during the entire experiment from studies
that involve ancillary phenomena (such as categorization) by letting the stim-
ulus vary within a type or a category over the course of the experiment. For
the main hypotheses, the coefficients of age and stopping rule will be tested
individually at the α = 0.01 level against the null hypothesis that the coeffi-
cients are zero. The effect of age is hypothesized as positive - therefore it will
be tested with a one-sided test, and will directly answer the research hypothe-
sis that age relates to the strength of the novelty effect. The effect of stopping
rule is represented by multiple coefficients, each representing one category of
the stopping rule criteria. We will conduct pairwise comparisons between the
three combined categories (“fixed”, “decrement”, “rest”) of the stopping rule.
We do not have directional expectations regarding these pairwise comparisons.
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If the p-value associated with the coefficient for the decrement criteria category
is below 0.01, a follow-up analysis will be run to provide additional detail as
to what makes the “% decrement criteria” more successful at giving rise to the
effect sizes. The follow-up analysis will be run using the subset of studies that
used one variant of the “% decrement criteria”. Stimulus modality, presentation
mode and identical stimulus will be modeled as nuisance variables. Additional
variables included in the model will be 1) “% decrement N baseline trials”, 2) “%
decrement N criterion trials”, 3) “% decrement percentage”, 4) “maximum N
habituation trials” “fixed vs. sliding window”. Each of the variables is hypothe-
sized to positively correlate with the effect size and therefore will be tested with
a one-sided test at the α = 0.01 level. The frequentist analysis will be carried
out in the latest version of JASP (JASP Team, 2021). As a robustness analysis,
a fixed effects meta-analysis, random effects meta-analysis, and another meta-
regression will be performed in the Bayesian framework. A Bayesian analy-
sis offers two main advantages here. First, the predictive performance of each
model can be assessed, providing direct comparison between the fixed effects
null model (effect size is zero across all studies), fixed effects alternative model
(effect size is positive and fixed across studies), random effects null model (the
average effect size is zero but varies from study to study), random effects alter-
native model (the average effect size is positive but varies across studies), and
the meta-regression (explaining variability in the effect sizes as a function of
the model predictors). Thus, the evidence in favor of the null model can be
computed, which is otherwise impossible using the frequentist method. Sec-
ond, a Bayesian meta-regression can be formulated to accommodate partially
missing data per study. The primary analysis using the frequentist method to
test the effect of individual characteristics of the decrement criteria requires to
limit the data to the subset of studies using those criteria, therefore splitting
the analysis in two steps. In the Bayesian analysis, those steps can be performed
simultaneously within one model that also includes the variables for which a
subset of the studies have missing data. For fitting the fixed and random effects
meta-analysis, the metaBMA package in R will be used (Heck, Gronau, & Wa-
genmakers, 2019). For fitting the meta-regression model, a custom-coded Stan
model will be used (B. Carpenter et al., 2017; Harrer, Cuijpers, Furukawa, &
Ebert, 2021). Models will be compared using the bridge sampling technique
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using the bridgesampling package (Gronau, Singmann, & Wagenmakers,
2020).

Additional Analyses

The primary analysis will be based on the standardized difference scores effect
size across within-subject studies. Previous articles have warned against the use
of this standardized effect size calculation for meta-analytic purposes (Dunlap
et al., 1996). The difficulty with standardized difference scores is that it depends
heavily on the correlation between the novel and familiar stimuli. A correla-
tion higher than 0.5 results in larger effect size (Dunlap et al., 1996; Morris &
DeShon, 2002) than that of the traditional between-subjects effect size (e.g.,
Cohen’s d). Further, conducting a meta-analysis of the within-subject effect
size requires the assumption that the correlation between novel and familiar
stimuli is equal between all studies (Morris & DeShon, 2002). If that is not the
case, one cannot interpret whether different effect sizes are due to the varying
difference between the novel and familiar trials, or due to differences between
their correlation. Similarly, an effect of a predictor in a meta-regression is diffi-
cult to interpret without this assumption; for example, an increase of the effect
size with increasing age might mean that the correlation between novel and fa-
miliar stimuli increases with age, rather than that the difference between novel
and familiar stimuli increases. However, it would be difficult to convert the
standardized difference scores effect size into the classical Cohen’s d or Hedges’
g effect size, as that would either require studies reporting the means and stan-
dard deviations for novel and familiar stimuli, or the observed correlation be-
tween novel and familiar stimuli. The number of studies that do report these
statistics will likely be very low.

Due to these difficulties, there will be a separate robustness meta-analysis
that uses the Hedges’ g effect size as the effect size of interest, from the group
of studies that reported a between-subject comparison of novel and familiar
stimuli, or those studies that reported a within- subject comparison, but did
report the additional statistics required to calculate the between- subject effect
size. The robustness analysis will be used to assess whether the conclusions
from the primary meta-analysis hold with a different choice for the effect size.
Because there will be missing data in the data set (see Section 6.3.6), we will
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also provide exploratory analyses investigating whether reporting practices of
habituation experiments improved over time.

The analysis of habituation attrition rates is ambiguous because it is not
clear what level of attrition is needed to yield a valid sample of habituated par-
ticipants at the post-habituation phase. A possible way to clarify this effect
is to analyze the habituation attrition and novelty effect sizes in a joint meta-
analytic model. In this model, habituation design factors can be used as predic-
tors of both habituation attrition and the effect sizes at the same time. Further,
a correlation between the two dependent variables will be estimated, which will
suggest whether higher attrition rates correlate with higher effect sizes (Oakes,
2010).

Dealing with Missing Information

In descriptive analyses, the number of missing data entries for each variable
of interest will be reported. In statistical analyses, only complete data (subject
to the particular analysis) will be used for the main analyses. That is, we will
use listwise deletion of rows in the data set based on only the variables that are
entered into the specific analysis. Robustness analyses will be carried out by
1) coding missing information of categorical predictors as their own category,
and by imputing the data using the mice package (van Buuren & Groothuis-
Oudshoorn, 2011).

6.4 Results

[To be added after data collection]

6.5 Discussion

[To be added after data collection]
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We are a little horse. A horse that still
needs milk and to learn how to jump.

–José Mourinho

Chapter 7

Habituation, Part II. Rethinking
the Habituation Paradigm

This chapter is published as Kucharský, Š., Zaharieva, M., Raijmakers, M., and
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Abstract

The habituation paradigm has been applied to study the development of memory,
perception, and other cognitive processes in preverbal infants, making it one of the
most prominent experimental paradigms in infant research. However, there are many
features of the process of habituation that remain elusive, which results in uncertainty
about the best research practices.

This article first discusses current practices in habituation research (e.g., the use of
habituation criteria) in relation to modeling the process of habituation, revealing sev-
eral issues that impede progress in the field. To overcome these challenges, we propose
to move towards a modeling framework to study critical features of the habituation
process. To facilitate this transition, alternative experimental designs are proposed.
The article encourages clearer thinking about the process of habituation, such that
the theory, design, and analysis are all in line with each other.

The article concludes with concrete recommendations to improve current prac-
tices in infant habituation research.

7.1 Introduction

Infants show a gradual decrease of attention towards stimuli
that are presented repeatedly — a phenomenon well known as habitua-
tion (Colombo & Mitchell, 2009; Fantz, 1964). Infant research uses the

habituation phenomenon heavily as it allows researchers to unearth the de-
velopment of capabilities such as learning and categorization, among others.
Characteristics of the infants’ looking behavior are often used as a proxy mea-
sure of habituation because eye movements are among the earliest overt be-
haviors to mature, making visual attention experiments especially feasible for
studying the development of cognitive abilities from the first weeks of life to
toddlerhood and beyond (Hunnius, 2007). Thus, the phenomenon of visual
habituation is extensively used as a tool in infant research to study memory,
perceptual, and cognitive abilities and their development, and became a promi-
nent experimental paradigm in infant research (Colombo & Mitchell, 2009;
Oakes, 2010). Although this article discusses visual habituation, it may be rele-
vant for other dependent measures as well (e.g., Lloyd-Fox et al., 2019).

There is a great variety of implementations of the habituation paradigm
(Colombo & Mitchell, 2009), which inspired the development of guidelines
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for designing habituation studies (Oakes, 2010) and specialized software that
fosters the adoption of these best practices (Oakes, Sperka, DeBolt, & Cantrell,
2019), following decades of theoretical, modeling, simulation, and empirical in-
vestigations into the topic (Ashmead & Davis, 1996; L. B. Cohen & Menten,
1981; Dannemiller, 1984; Gilmore & Thomas, 2002; Schöner & Thelen, 2006;
Sirois & Mareschal, 2004; Thomas & Gilmore, 2004; Young & Hunter, 2015).
However, there still appears to be a lot that is unknown about the habituation
process itself as well as the consequences of experimental design choices used
to make inferences about infants’ abilities studied in the habituation paradigm.
Given the past decade that led to the realization that psychological science may
not be as credible as generally thought previously (Open Science Collabora-
tion, 2015; Pashler & Wagenmakers, 2012), it is imperative to provide critical
commentary of the current practices, and provide alternative ways of moving
forward. The aim of this article is to contribute to this development.

The structure of this article is as follows. First, the article describes current
practices in habituation research in terms of using infant-controlled designs in
general, and habituation criteria in particular. This section identifies specific
issues with these approaches and poses challenges that need to be resolved. Sec-
ond, we present ideas that can lead the field to move towards resolving theses
issues. In this section, we argue that more systematic investigation of the pro-
cess of habituation is needed, identify three major theoretical questions, and
present a modeling framework that enables us to resolve these questions. How-
ever, this proposal leads to changing the current habituation paradigm, and, as
such, will bring about additional challenges. In the third section, we discuss
some practical considerations for changing the habituation paradigm in antic-
ipation of some issues that will arise as a consequence. The article ends with
conclusions and recommendations.

7.2 Habituation as a tool

Historically, important work of Fantz (1964) is considered as one of the starting
points in studying habituation in human infants (Tsang, 2012). The original
methodology was as follows. An infant was repeatedly presented two stimuli at
the same time, one novel, and one that remained unchanged between the trials.
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The looking time to each stimulus was recorded. The general observation was
that the amount of time the infant spent looking at the novel stimuli was longer
relative to the amount of time spent looking at the familiar (constant) stimu-
lus, thus demonstrating the effect of habituation towards the familiar stimulus.
Although many studies targeted the habituation phenomenon as the center of
the interest (e.g., Kagan & Lewis, 1965), the phenomenon appeared so reliably
and in early stages of infant development, that it presented an opportunity to
use habituation in experiments that do not necessarily aim to study habitua-
tion in and of itself, but as a research tool to study infants’ abilities such as
memory, learning and categorization (e.g., Fagan III, 1970; Horowitz, Paden,
Bhana, Aitchison, & Self, 1972; Horowitz, Paden, Bhana, & Self, 1972; Wether-
ford & Cohen, 1973). The core logic is that if an infant displays a habituation
effect, they display an ability to remember the familiar stimulus. Further, the
fact that the infant shows increased looking times to a novel stimuli shows that
the infant is able to discriminate between the two stimuli, or eventually, being
able to distinguish between different categories of stimuli (Oakes, Madole, &
Cohen, 1991) or being able to discriminate between different exemplars from
the same stimulus category (Quinn, Eimas, & Tarr, 2001).

However, empirical data do not always suggest that infants prefer the novel
stimulus, and occasionally produce effects in the opposite direction. The fac-
tors that lead to one or the other effects are to this day under active investiga-
tion. One influential explanation for these two phenomena is the model pro-
posed by Hunter and Ames (1988). The authors proposed that the infant’s
attention towards the habituation stimulus initially increases and only then
shows a monotonic decline pattern over repeated exposure to the stimulus. The
speed at which attention rises and declines can be moderated by various factors
such as age, familiarization time, stimulus complexity (relative to infant’s cog-
nitive ability), etc. Therefore, whether one observes preference for the novel
or the familiar stimuli is entirely dependent on the interplay between these fac-
tors and the design of the study. This theoretical explanation is soon to be sub-
jected to a systematic exploration in the ManyBabies 5 initiative (manybabies
.github.io/MB5/).

The original methodology introduced by Fantz (1964) (in today’s terms
called a visual paired comparison paradigm) also had some drawbacks. One

https://manybabies.github.io/MB5/
https://manybabies.github.io/MB5/
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of the more important concerns was that it is unclear whether longer looking
times towards the novel stimulus relative to the familiar stimulus are caused
by a novelty preference or, on contrary - by an avoidance of the familiar stim-
ulus. Further, by allowing only a relative comparison, the visual paired com-
parison offers only indirect insight on how infants habituate over time in the
absolute sense. As a result, alternative methodologies were developed (Aslin,
2007; Colombo & Mitchell, 2009; Turk-Browne, Scholl, & Chun, 2008). Al-
though there exists a large variation between these methodologies, there is one
aspect that is common to most of them: Separation of the experiment into a
habituation (familiarisation) phase, and a test (novelty preference) phase. Dur-
ing the first (habituation) phase, infants are repeatedly exposed to a stimulus
with the goal of habituating the infants to that stimulus. After this phase is
completed, the novel stimulus is introduced which commences the test phase.
The purpose of the test phase is to compare infants’ reaction to the novel ver-
sus the old stimulus. A novelty effect occurs when the response toward the new
stimuli exceeds that towards the old stimuli, and is interpreted as evidence that
the infant was able to recognize the systematic differences between the old and
the new stimuli. Instead of the term “novelty effect”, researchers sometimes
use the term “dishabituation”. However, the term dishabituation can be some-
times used to refer to a phenomenon where the attention to the old stimulus
spontaneously recovers to the initial level. Due to the ambiguity of the term
dishabituation, we will use the term “novelty effect” throughout the article.
The opposite effect is called a “familiarity effect”.

Separation of the experiment into two phases gives an opportunity to assess
two questions independently: 1) did habituation occur during the habituation
phase, and 2) did a novelty (or a familiarity) effect occur. For example, Quinn,
Eimas, and Rosenkrantz (1993) reported a study (Experiment 1 in the cited arti-
cle) in which infants were shown pictures of cats (or dogs) in 6 habituation tri-
als of 15 seconds each, and then presented side by-side with pictures with birds
during the test phase – the main hypothesis being that the infants would pre-
fer looking at the pictures of birds compared to cats (or dogs), which would
demonstrate their ability to discriminate between the two categories. Quinn et
al. (1993) found evidence for the novelty effect, despite not being able to demon-
strate that the infants habituated (i.e., decreased their attention) to the familiar
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stimuli during the habituation phase. This finding was somewhat surprising
because the novelty effects would be expected only if the infants habituated to
the old stimulus in the first place. There may be various plausible explanations
of these findings, but the critical point of this example is that it is possible to
make such observation simply by dividing the experiment in two phases.

In an ideal world, removing the influence of the moderating effects could
be done by making sure that the habituation phase of the experiment is long
enough for every participant to safely habituate. In reality, however, infants are
likely to drop out from lengthy experiments (Slaughter & Suddendorf, 2007).
This can lead to high attrition rates among the participants, which can be possi-
bly related to the developmental stages of the infants (Hunnius, 2007). Habit-
uation studies thus balance on a thin line, seeking to minimize the length of an
experiment to maximise participants’ comfort and decrease the attrition rate,
all the while making sure that habituation was sufficient so as to adequately test
the question of interest (Peterson, 2016).

To this end, the so called “infant-controlled habituation protocols”
(Horowitz, Paden, Bhana, Aitchison, & Self, 1972; Horowitz, Paden, Bhana, &
Self, 1972) became a common practice in the literature (Colombo & Mitchell,
2009, p. 228). In these protocols, infants’ reaction to the stimulus determines
the pace and course of the procedure, and allows researchers to stop the exper-
iment early, once the infant is deemed to be habituated.

Over the years, researchers developed several simple decision rules (hence-
forth “habituation criteria”) designed to detect that habituation was sufficient.
Typically, the stimulus is repeatedly presented in a sequence of independent
trials. Attention towards that stimulus is recorded either manually or using
eye-tracking technology, usually by using the time it takes the infant to look
away from the stimulus at each trial as a measurable proxy. During this proce-
dure, attention towards that stimulus usually drops gradually. The mean of the
most recent x number of trials (x̄) is compared to the mean of the y number of
criterion trials (ȳ). When the looking times drop below a threshold – when x̄ is
less than z% of ȳ – researchers conclude that habituation was successfully in-
duced and the habituation phase of the experiment can be concluded. Varieties
of this procedure can by composed by varying 1) the number of trials x and y,
where increasing these numbers is thought of as increasing the precision of the
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procedure at the expense of making the experiment longer, 2) the set of trials
used to define the “criterion”. Commonly, the criterion trials are simply the
first trials shown to the infant. However, alternatives exist such as taking the y
trials with the highest looking time, inspired by the Hunter and Ames (1988)
model, which suggests that the trials that attract the most attention may not be
the first trials, nor the y trials that immediately preceded the x most recent tri-
als. Lastly, 3) the threshold percentage drop in looking time z can be varied so
to decrease or increase the sensitivity of the procedure, thus affecting the type-
I (incorrectly declaring habituation when the infant has not habituated) and
type-II errors (incorrectly missing out on an infant that has in fact habituated).
The most commonly used value is 50%. Probably the most prevalent “initial
3-3-50%” criterion is one where 50% of the mean across the initial three trials is
compared to the mean of the three most recent trials (Oakes, 2010), although
variations of the settings of the criteria vary across the literature (e.g., Domsch
et al., 2009; Flom & Pick, 2012). An ongoing systematic review of the existing
literature will quantify the size of this variation (Zaharieva et al., 2022).

Most of the criteria that are commonly used today are some variations of
heuristics developed decades ago (Ashmead & Davis, 1996; Dannemiller, 1984;
Thomas & Gilmore, 2004), and are in spirit similar to performance criteria in
learning experiments (Bogartz, 1965; Dannemiller, 1984) in that they are thought
of as standardization which ensures that the level of habituation1 is equated
across participants (Peterson, 2016). Some of these criteria are currently readily
available to the empirical researcher using dedicated software for creating ha-
bituation experiments (Oakes et al., 2019). Today, habituation criteria are con-
sidered an established part of habituation designs, and resulted in an extensive
track record of studies.

7.2.1 Issues with the infant-controlled paradigm
Despite their popularity, habituation criteria have some drawbacks. Some of
these issues were thoroughly debated and documented in previous literature
(L. B. Cohen & Menten, 1981; Dannemiller, 1984; Thomas & Gilmore, 2004).
Habituation guidelines have reflected on some of the issues advising how to

1In this article, we use the term “habituation level” to mean “the degree to which an infant
is habituated at a certain point in time.”
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use them (L. B. Cohen, 2004; Oakes, 2010). However, we will argue in the
following section that the issues with habituation criteria are deeper than what
seems to be accepted in the applied literature, so much so that perhaps one
ought to question whether to use habituation criteria in the first place rather
than how to use habituation criteria.

Performance of habituation criteria

The use of habituation criteria in experiments assumes that these criteria suc-
cessfully measure habituation levels2, that these levels are possible to compare,
control, and equate between infants (Dannemiller, 1984), and that habituation
criteria have adequate error rates in order to “filter out” infants that do not
habituate but to retain infants that do habituate (Oakes, 2010). Habituation
criteria have a large intuitive appeal. However, it is prudent to verify the under-
lying assumptions. One of the options to assess performance of the habituation
criteria is by running simulation studies. This section discusses findings of pre-
vious simulation work that has brought largely negative results, casting initial
doubt on whether the habituation criteria serve their intended purpose.

Dannemiller (1984) conducted a simulation study to assess the performance
of the initial 3-3-50% habituation criterion. The model that generated data in
this simulation assumed that looking times at trial t can be decomposed into
a signal and Gaussian noise component. The signal was modelled as an expo-
nential decay function that starts at point g and decays with a rate r towards an
asymptote k. By varying the three parameters of the signal component and the
amount of noise (specified by the variance of the Gaussian noise), Dannemiller
(1984) was able to find that the false alarm rate (i.e., the probability that the
data reach the criterion given there is no decay in attention over time increases
rapidly when the noise in the data increases. Using this criterion also leads to
stopping the experiment too early (before reaching the desired 50% habituation
level). The variance of the criterion is also high, suggesting that controlling or
“equating” the level of habituation between participants is sub-optimal. Fur-

2We will set aside that habituation is putatively measured in terms of visual attention, which
is further supposedly measured by looking times, despite the fact that there may not be one-
to-one correspondence between covert and overt attention (Posner, Snyder, & Davidson, 1980;
van der Stigchel & Theeuwes, 2007).
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thermore, under certain conditions, the true positive rate of the criterion (i.e.,
the probability that the data reach the criterion given that there is a decay in at-
tention over time) increases as noise increases; or in other words, data with low
amount of noise can lead to difficulties to detect habituation. We will return to
this issue in more detail in section 7.2.1. In sum, the criterion was shown to have
a high Type-I error (declaring habituation when none occurred) and a theoret-
ically possible high Type-II error (missing habituation when it occurred), and
in the cases for which habituation is correctly detected, the habituation levels
were not properly equated between participants.3

Ashmead and Davis (1996) conducted a similar simulation study to reach
similar conclusions as Dannemiller (1984). Additionally, they found that the
test-retest reliability of the habituation criterion is very low, under certain con-
ditions bordering with zero (low reliability, albeit larger than zero, was also
found empirically, McCall & Carriger, 1993). Because unreliable measures in-
crease the noise in the data (Ashmead & Davis, 1996), low reliability further
reduces the power to detect the experimental effect, such as the novelty effect.
However, issues with low power are of course influenced by various design
choices, other than the habituation criteria alone. These design choices that
affect power are out of the scope of this article (DeBolt, Rhemtulla, & Oakes,
2020; Oakes, 2017; Visser et al., 2023).

In sum, the evidence from the few simulation studies evaluating the perfor-
mance of habituation criteria does not suggest that the criteria have desirable
properties. This does not necessarily mean that the criteria are not fit to their
purpose, only that evidence in favour for the criteria from simulation studies
is limited or inadequate. However, simulations come with their own limita-
tions (e.g., selecting a data generative process, appropriate parameter settings),
choices that can all influence the results with regards to the performance of the
criteria, as well as the selection of the exact criterion that is studied. Thus, citing
precise numbers obtained in the simulations are not of much importance as it
is uncertain to what extent the patterns in the synthetic data resemble those en-
countered in empirical data, or that, perhaps, a slightly tweaked criterion could

3Ironically, the article by Dannemiller (1984) is sometimes cited as a canonical reference
of the 50% decrement criterion, despite that even the abstract concludes with “the results pre-
clude the use of trials to criterion as an index of rate of habituation” suggesting that the author
himself was not convinced of the criterion’s utility.
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render better results. Further, the problems of habituation criteria and their
performance to some extent rely on noise. Even if the simulation studies were
accurately calibrated to reflect the amount of noise in the empirical data, it does
not necessarily mean that when simulations show inadequate performance of
the criteria, the criteria themselves are inadequate — it could only mean that it
is necessary to reduce noise. Perhaps by reducing the measurement noise, by de-
veloping experimental protocols that reduce variance of infants’ looking times,
or by other means that can reduce the amount of noise in the experiment.

Conceptual issues

Simulation studies may have not provided strong evidence in favour of the ha-
bituation criteria. However, we can continue by critically examining their as-
sumptions. Here, we discuss that the assumptions come with some underlying
conceptual issues.

Arguably, the most problematic feature of habituation criteria relates to the
finding that was first discussed by Dannemiller (1984): In certain scenarios, it
is very difficult to successfully detect habituation unless the data contain a lot
of noise, meaning that the data pass the criterion capitalizing on chance. To
explain this phenomenon, Thomas and Gilmore (2004) noted the following
observation. Typically, habituation criteria check whether the mean of the last
x trials is less than z% of the mean of the first y trials (or the y successive trials
with the largest mean). This at minimum requires the assumption that when a
participant is “fully habituated”, their looking times are lower than z% of the
mean of the first y trials. Ideally, if habituation criteria are supposed to equate
habituation levels between infants (Colombo & Mitchell, 2009; Dannemiller,
1984), this requires the assumption that when fully habituated, a person will ei-
ther no longer look at the stimulus, or at least that all people drop down to the
same level of attention (in proportion to their initial levels). However, this as-
sumption is likely false — even a fully habituated person would still look at the
stimulus for some period of time and there probably is substantial individual
variation (Dannemiller, 1984; Gilmore & Thomas, 2002; Thomas & Gilmore,
2004). For this reason, most models assume that even after a point of habitu-
ation is reached, there is still some attention paid to the stimulus (L. B. Cohen
& Menten, 1981; Dannemiller, 1984; Thomas & Gilmore, 2004). Performance
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of the habituation criterion depends crucially on the degree to which residual
attention is exhibited compared to the initial attention level and the noise in the
data. In cases for which the residual attention is larger than the z% of the ini-
tial level, the criterion would rarely detect habituation without enough noise
in the data, hence letting the data meet the criterion by chance. Figure 7.1 pro-
vides an illustration. All realisations of the habituation curve in the figure show
a decline in attention levels. However, the criterion is unable to detect habit-
uation under conditions of low noise and high residual attention level. The
same level of residual attention passes the threshold only if the noise is high
enough to bring the running mean below the threshold by chance, thus demon-
strating the counter-intuitive effect that when residual attention is relatively
high, decreasing noise in the observations increases the Type-II errors. In prin-
ciple, the Type-II error rates of the habituation criteria can vary between ≈ 0%
and ≈ 100% depending on this feature of the habituation process (Thomas &
Gilmore, 2004).

The possibility of high Type-II error rate is important, as it is one of the cru-
cial ingredients for evaluating the criterion’s positive predictive value (PPV),
i.e., the percentage of infants that truly habituated to the desired level in a pool
of infants that were classified as habituators. The PPV is perhaps the desired
metric for evaluating the classification properties of the criteria. PPV, in addi-
tion to estimating the sensitivity and specificity of the criteria, also requires an
estimate of the true proportion of infants that do habituate. However, habitu-
ation criteria are usually intended for filtering out participants that did not ha-
bituate to the desired level (Oakes, 2010), and the discussion is mostly skewed by
the concern of reducing false positives only. Minimizing false negatives (Type-
II errors) and estimating the proportion of infants that habituate is sometimes
of secondary concern in the habituation literature. Unfortunately, the risk of
encountering high Type-II error due to high residual attention levels is rarely
discussed or investigated in the habituation literature, beyond the mentioned
theoretical and simulation articles, and the discussion of what proportion of
infants are capable of habituating arguably receives even less attention. Thus,
to our knowledge, PPV of the currently used habituation criteria under realis-
tic scenarios have not yet been quantified or extensively studied.

Taken together, these results do not permit us to conclude whether or not
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Figure 7.1: Four realisations of the model of habituation (Thomas & Gilmore,
2004) evaluated by the “initial 3-3-50%” criterion. Black dots connected with
lines show the “observed” looking times. The dashed curve shows that the un-
derlying habituation process across observations is the same but is manifested
through different looking time errors per observation. Diamond shapes indi-
cate the calculated mean of the most recent three trials (i.e. a diamond at trial
t is the mean of the looking times at trial t, t − 1, and t − 2.). Red diamonds
indicate that the running mean did not reach the threshold calculated as 50%
of the mean of the first three trials (dashed line), blue diamonds indicate oth-
erwise.
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habituation criteria are suitable for their purpose. Previous simulation work
suggests that under certain scenarios, they do not work very well. However,
it may be that the vast majority of empirical applications of habituation crite-
ria fall into a region of the parameter space where the criteria just about work.
Unfortunately, the current empirical literature does not seem to provide much
evidence to tackle that question.

Conditioning on the dependent variable

Aside from habituation criteria, other approaches to infant controlled designs
were proposed using statistical models (Ashmead & Davis, 1996; L. B. Cohen
& Menten, 1981; Dannemiller, 1984; Gilmore & Thomas, 2002; Thomas &
Gilmore, 2004; Young & Hunter, 2015). These statistical models are based on
the idea that infants’ behavior can be described as a functional process where at-
tention (measured by looking times) evolves over the course of the experiment.
These methods are able to generate simulated data and as such were used in the
simulation experiments that evaluated habituation criterias’ performance. The
other characteristic of these statistical models is that they can be fitted to em-
pirical data to make inferences about the individual participants. These models
allow more flexibility and control over the underlying assumptions, and can be
used to make probabilistic instead of binary statements about whether or not
infants habituate, and so could in principle overcome the conceptual limitation
of habituation criteria discussed above (Gilmore & Thomas, 2002; Thomas &
Gilmore, 2004). As such, these models were proposed as an alternative to ha-
bituation criteria and to make inferences about population (group) level effects
as well.

Paradoxically, the general idea of using infant controlled designs hinders
our ability to use these models to carry our inferences. As described previ-
ously, standard habituation designs aim to detect habituation as early as pos-
sible (Oakes, 2010). The consequence is that data sets from different infants
have different number of administered habituation trials, depending on their
behavior. Thus, it is impossible to know how the data would have evolved,
had the experiment continued towards a fixed number of trials, or had a dif-
ferent habituation criterion been applied. Further, data from infants that do
not show substantial decrease of attention are often discarded from the data
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set (Oakes, 2010). If the method used for determining whether or not to ad-
minister additional trials works as intended, the amount of data from different
participants is related to the characteristics of the infants’ looking behavior that
is being modeled. As a result, fast habituators are represented by less trials than
slower habituators, and even slower habituators than that are omitted from the
data set. If we wanted to use such data to make inferences from these statistical
models, the analysis could be biased by such selection bias, where missing data
are directly related to the dependent measure (i.e., missing data are not missing
at random Steyvers & Benjamin, 2019). This issue will be further elaborated in
Section 7.3.4.

Thus, if one wanted to use statistical models for making inferences, these
inferences would be biased if any method for determining whether or not to
display additional trial, or whether or not to exclude the participant from the
data set, given infants’ looking behavior, was used during the data collection.

7.2.2 Conclusions
The present section discussed challenges that occur with the practice of using
infant-controlled paradigms. It seems that the validity and accuracy of the pro-
posed methods are not currently being established empirically. This does not
necessarily mean that the current methods are not fit to their purpose. After
all, habituation criteria have been used in a variety of studies and they often do
seem to produce desired effects. However, this does not give us much informa-
tion about their performance in specific applications, and does not give us the
ability to predict what kind of criteria to use in what context.

Simulations that would be useful for validating these methods are limited
as one has to decide on the data generative process used in the simulation. To
produce realistic simulations, one would have to decrease our epistemic un-
certainty about the process of habituation and compare alternative models of
habituation. However, the very use of infant-controlled methods in data col-
lection possibly introduces a bias of data missing not at random, which can lead
to misleading conclusions from the statistical models.

In light of these issues, it is worth questioning whether we should, as a field,
reconsider the habituation paradigm. That means at least momentarily post-
poning the use of habituation criteria or other methods proposed for infant-
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controlled studies, until we accumulate enough understanding of the process
of habituation. In what follows next, we propose alternative ways to study and
use the habituation phenomenon in empirical research while avoiding poten-
tial problems that we just discussed.

7.3 A way forward
The previous section described challenges with the current habituation paradigm.
To propose a positive outlook, the current section proposes alternatives that
hopefully help the field to move forward.

Specifically, first we turn attention to what features of the process of ha-
bituation need to be empirically established and verified. In this section, we
provide an example that demonstrates the use of habituation models to answer
questions about the process of habituation more directly, and how to evaluate
individual differences between participants. This example also demonstrates
some of the previously described issues with the infant-controlled paradigm.

Second, we discuss how the alternative paradigm we propose in this article
could lead back to using the habituation phenomenon “as a tool”, instead of
studying habituation only in isolation.

As already suggested, one of the underlying themes of this article is that per-
haps our understanding of the process of habituation has not advanced yet up
to a point of confidence that we can measure, control and equate habituation
levels between infants. A natural solution to this problem would be to turn
the focus towards studying the characteristics of habituation itself, instead of
relying on it as a tool with poorly understood workings. Such thinking is of
course not novel and has a significant tradition in the literature, spanning sev-
eral decades of theorising (see Colombo & Mitchell, 2009, for an overview) and
formal modeling (Ashmead & Davis, 1996; L. B. Cohen & Menten, 1981; Dan-
nemiller, 1984; Gilmore & Thomas, 2002; Schöner & Thelen, 2006; Sirois &
Mareschal, 2004; Thomas & Gilmore, 2004; Young & Hunter, 2015).

7.3.1 Theoretical models of habituation
An important facet of understanding the process of habituation is to try to ex-
plain the phenomenon in terms of its cognitive or biological underpinnings.
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Theoretical accounts of habituation have a long history. Here we briefly sum-
marise some of the important theoretical explanations of the habituation phe-
nomenon and how they can contribute to our understanding of the phenomenon.
For more detailed overview, see Colombo and Mitchell (2009).

A popular theoretical account is one of Sokolov (1963), building upon the
discovery of orienting reflex (Pavlov, 1927), and explains habituation in terms
of a mismatch between the perceived stimulus and its internal representation in
memory (Sokolov, 1977). Repeated presentations of the stimulus allow to form
more accurate representations, leading to a lesser mismatch, thus decreasing the
neuronal response to the stimulus over time. This theoretical account paved
the way to link habituation to learning, as individual differences of the speed
of habituation is thought to be associated with their ability to learn from the
environment (form internal representation of the stimuli).

Additional theoretical model by (Jeffrey, 1968) proposed that the stimuli
are not processed uniformly the same upon each presentation, but different
features may be processed at different times (depending on their importance
based on e.g., visual saliency), which can potentially explain additional indi-
vidual variation. Such account calls for studying looking behavior in a greater
visuo-spatial detail than only analyzing overall looking times. Despite that early
evidence shown mixed results (Lasky, 1979; Leahy, 1976; Miller, 1972), the emer-
gence of novel dynamic models of eye movement behavior (e.g., Kucharský, van
Renswoude, Raijmakers, & Visser, 2021; Le Meur & Liu, 2015; Malem-Shinitski
et al., 2020; Schwetlick et al., 2020) may prove to be useful to revisit such alter-
native explanations.

A dual process theory in turn posited that the habituation phenomenon
is driven by two somewhat opposing processes (Groves & Thompson, 1970;
Thompson & Spencer, 1966). In this model, one process is responsible for
the decrease of the response to the stimulus over time, whereas the other is re-
sponsible for sensitisation, thus allowing potential increase (or spike) in the re-
sponse, which is also reflected by the theoretical account of Hunter and Ames
(1988) where response to the stimulus may initially increase before an eventual
drop off. Model of Groves and Thompson (1970) also makes the prediction
of “spontaneous” dishabituation effects where relatively novel variation of the
old stimulus “resets” the habituation process, thereby restoring the attention
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to initial levels.
An important class of theoretical process models are formal mathemati-

cal models that are drawn from broader theoretical framework. These formal
models can generate data which can be compared with patterns in empirical ob-
servations to check plausibility of the models. Further, the models can be used
to generate specific (perhaps not obvious) predictions. Empirical work can
then aim to verify whether such predictions realize in a carefully designed ex-
periment to elicit such patters. Notable works in this respect was published by
Sirois and Mareschal (2004) which used connectionist approach and Schöner
and Thelen (2006) who used dynamic field theory to link observable looking
time patters to underlying neurological and cognitive mechanisms.

7.3.2 Statistical models of habituation
Another class of formal models are models that could be described as statistical
models (Ashmead & Davis, 1996; L. B. Cohen & Menten, 1981; Dannemiller,
1984; Gilmore & Thomas, 2002; Thomas & Gilmore, 2004; Young & Hunter,
2015). These models are useful because not only because they can generate spe-
cific predictions that can be subsequently verified by empirical observations,
similarly to the formal theoretical models discussed in the previous section, but
can be also fit to the data to make inferences about the individual infants, or
population (individual) effects. As such, they have been suggested as an alter-
native to habituation criteria, as was already discussed in Section 7.2.1, but also
as an alternative to classical statistical approaches to carry out inferences (Ash-
mead & Davis, 1996; L. B. Cohen & Menten, 1981; Thomas & Gilmore, 2004;
Young & Hunter, 2015).

Compared to theoretical models of habituation, statistical models of ha-
bituation often abstract away from some of the theoretical considerations, or
in other words, do not usually attempt to explain the data in terms of the un-
derlying biological or cognitive mechanisms. Nevertheless, these models are
often carefully designed to reflect implications from theoretical models (e.g.,
Gilmore & Thomas, 2002; Thomas & Gilmore, 2004). By virtue of being sta-
tistical models, a variety model fit measures may be used to determine potential
sources of misfit to empirical data, which can inform the initial theoretical as-
sumptions.
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In practice, statistical models have the potential to inform experimental de-
sign, data collection, analysis, and interpretation. However, to this date, mod-
eling approaches to run and analyze habituation studies have not been widely
adopted in empirical research. A potential reason why these models have not re-
placed habituation criteria in data collection is that the model estimation needs
to take place online. While that became feasible with the increase of compu-
tational resources due to the advance of technology, it may have been a severe
obstruction in the past. Further, the implementation of such procedures re-
quires some statistical and programming expertise, and modeling approaches
have not been made readily available to the empirical researchers as opposed
to the habituation criteria (Oakes et al., 2019) and traditional statistics usually
used to carry out the inferences.

These two issues would be soluble by implementing a modeling approach
in an easy to use habituation software (e.g., Oakes et al., 2019). However, the
question then becomes, which of the models should one choose to implement?

A promising approach would be to run simulation studies, similar to pre-
viously discussed simulation studies that verified performance of habituation
criteria. However, simulation studies will be only helpful to the extent that
the data generative process that is being implemented resembles the process in-
duced in real-world labs.

Paradoxically, the abundance of proposed models of habituation does not
make it easier to adopt this approach in practice. Similarly as in the case with
the various habituation criteria, there is no clear guideline which model to use
for empirical research and the validation of the models is largely limited. There
is only little work dedicated to assessing the performance of different models of
habituation. Typically, modeling articles present their own view of the prob-
lem, apply it to one or two data sets, and leave the problem be without much
discussion and comparison to alternatives. Sometimes, longer term projects
would have short series of articles that dedicate some effort in developing a sin-
gle modeling paradigm (e.g. Dahlin, 2004; Gilmore & Thomas, 2002; Thomas
& Gilmore, 2004). However, a recurring theme is that these models are sel-
domly compared to each other across varied data and applications, making it
difficult to assess what model or theoretical standpoint is actually favorable
when confronted with empirical data. Simply put, although there are plenty
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of models, methods, and theoretical frameworks upon which to build a new
experimental paradigm of habituation, the degree to which these approaches
are corroborated by the data is relatively low, and so is the uncertainty high
with regards to which framework can replace already established criteria.

Ideally, to come up with realistic models of the habituation process, one
would first have to subject to analysis many habituation data sets coming from
a plethora of tasks, designs, and populations. Using these data, process models
of habituation proposed in the literature (Ashmead & Davis, 1996; L. B. Co-
hen & Menten, 1981; Dannemiller, 1984; Gilmore & Thomas, 2002; Schöner &
Thelen, 2006; Sirois & Mareschal, 2004; Thomas & Gilmore, 2004; Young &
Hunter, 2015) can then be compared. Those models that capture patterns in
the data the best would be corroborated, and those that do not will either be
updated or eventually dropped. Based on the estimated parameters (and their
variability) of the final models, more realistic simulations can be carried out.

However, as we discussed in Section 7.2.1, data collected using some kind
of infant-controlled paradigm induces data missing not at random, and as such
may bias the analyses. Thus, it is important to use experimental designs that are
not conditioned on the infants’ behavior. An example of such design would be
a fixed number of trials protocol, which is commonly referred to as familiari-
sation design.4 The research goals of familiarization studies does not typically
rotate around the question of whether individual infants have habituated how-
ever. Further, familiarisation studies often present the stimuli for very few trials
such that any kind of modeling will be a difficult task. For the moment, let’s
set aside this issue and assume that we have enough diverse data sets that are
not conditioned by the infants’ behavior and that are fit to be used for mod-
eling exercises. This section presents ideas about how to study habituation in
fixed number of trials designs. We will discuss the practical implications for
data collection in Section 7.4.

With the end goal of proposing alternative ways how to use habituation “as
a tool”, we first discuss how can the abundance of existing statistical modeling

4Sometimes, “familiarisation” studies can also employ infant-controlled aspects, such as
when the experiment runs until the infant accumulates predetermined time spent looking at
the stimulus, which can take more or less time depending on how much the infant pays atten-
tion to the stimulus. These experiments can be also considered infant-controlled and are not
part of the current discussion.
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approached be combined and compared. In order to foster model comparison,
we identify three central features of the habituation process that are desirable to
capture with formal statistical modeling what we discuss in the next three sec-
tions in terms of empirical questions. This allows us to propose general mod-
eling framework that encompasses most of the proposed models to date, and
follow with an example. Based on this modeling framework, we continue by
discussing how to go beyond modeling habituation itself to using modeling to
use habituation as a tool.

Question 1: Who habituates?

The habituation phase aims to ensure that the infant habituates to a stimulus
(i.e., decreases the level of attention towards it) so that we can test for a novelty-
familiarity effect during the post-habituation test trials. However, because not
all infants show a conclusive habituation pattern, habituation criteria are used
to "filter out" non-habituators under the premise that there is no reason to ex-
pect novelty-familiarity effect in infants who did not habituate in the first place
(Oakes, 2010). Usually, participants that did not habituate according to some
criteria would be excluded from the experiment and their data will often re-
main unreported. Thus, it is hard to judge how many infants habituate, how
many infants do not habituate, or how many infants would be classified as “ha-
bituating” under one criterion but not under a different criterion.

It is crucial to point out that there is a large confusion about what it means
if someone is said to “habituate”. That is, habituation is sometimes referred
to as a state of attention that is sufficiently low compared to the initial level of
attention — a view consistent with the habituation criteria, where an infant is
called a “habituator” if they pass the habituation criterion. However, habitua-
tion can be also thought of as a process where a person who is habituating shows
a decrease of attention over time. This distinction is important because it is
possible for someone to be habituating (i.e., show a decrease of attention over
repeated exposure), but may not achieve a desired decrease of attention within
a specific time. While this person would be classified as “non-habituator” un-
der the view that habituation is simply a state of attention at a specific time, but
under the lens of the process of attention, the person is habituating.

Within formal models of habituation, it is possible to sharply distinguish
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between these habituation patterns. This has been already suggested some forty
years ago by L. B. Cohen and Menten (1981):

The experiment we would propose would run each subject for a
fixed trial length (e.g., 20 trials), [...] However, one possible out-
come of such an experiment is the result we have obtained: that
neither model predicts the obtained curve. This would then ne-
cessitate a more elaborate model [...], or perhaps a multi-population
model containing, for example, “habituators” and “non-habituators”.

First, it is possible to encounter a sub-population of infants that does not
show decline of attention over time, while other sub-population do. This alter-
native can be represented by “multi-population” (mixture) models, as L. B. Co-
hen and Menten (1981) mentioned in the quote above. This view has been ap-
plied in some of the modeling approaches (Young & Hunter, 2015); however,
mixture models that can represent two distinct populations of “habituators”
and “non-habituators” can be worked into the most of the other habituation
models as well. Second, within the group of “habituators”, it is possible to esti-
mate the degree to which a person is habituated. Thus, instead of focusing on
whether or not someone habituated, we may instead focuse on the exact level
of attention at a certain point in time (Gilmore & Thomas, 2002; Thomas &
Gilmore, 2004).

Thus, separating those two views of habituation enables us to shift focus
towards different kinds of questions: 1) Who habituates, that is, which infants
show a general decline in attention and which do not (if any), and 2) The speed
of the habituation process, that is, how fast or to what extent an infant habit-
uates, and what is the estimated attention level at a particular point in time.
These two questions can be further related to other empirical questions, such
as whether the proportion of infants that are habituators increases with age,
etc.

Question 2: What is the shape of habituation?

Apart from the fact that it is uncertain who habituates and who does not, there
is a considerable uncertainty and discussion about the shape of the habituation
curve (Ashmead & Davis, 1996; L. B. Cohen & Menten, 1981; Dannemiller,
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1984; Thomas & Gilmore, 2004; Young & Hunter, 2015). Specifically, there is
a debate whether decline of attention during habituation experiment can be
described by a parametric function, and if so, what shape of the function best
describes the process, and to what extent there may be individual differences.

There is an alternative argument to be explored too of whether simple para-
metric functions can describe between and within person variability in the ha-
bituation process, or whether a more complex mechanistic model needs to be
used to cover all corner cases of real-world behavior (Schöner & Thelen, 2006;
Sirois & Mareschal, 2004).

The present modeling framework proposes to focus only on parametric
functions, as those are easily combined and compared statistically, and will hope-
fully lead to sufficient description of patterns in the data. Example questions
that can be answered by investigating the shape of the habituation curve are:

1. Is habituation a continuous process (Ashmead & Davis, 1996; Danne-
miller, 1984; Gilmore & Thomas, 2002; Thomas & Gilmore, 2004; Young
& Hunter, 2015) or a discrete phenomenon (L. B. Cohen & Menten,
1981)?

2. Is there a limit of “residual attention” levels or does attention level even-
tually decrease to zero (Thomas & Gilmore, 2004)?

3. Does attention always decrease over time, or is there a spike following
the initial trials (Hunter & Ames, 1988; Thomas & Gilmore, 2004)?

4. What is the general speed of habituation process? Relatedly, how many
trials does it take for an infant to habituate up to a certain habituation
level (Thomas & Gilmore, 2004)?

As with the previous question of “who habituates?”, the answers to such
questions may be later explored in relation to other factors, such as age, the
nature of the stimuli, etc.

Question 3: What is the distribution of looking times?

Lastly, there is some uncertainty around specifying correct distributions for
looking times (Csibra, Hernik, Mascaro, Tatone, & Lengyel, 2016). Specify-
ing a distribution that captures the main characteristics of the looking time
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outcome can improve the performance of many models. Previous findings
(L. B. Cohen & Menten, 1981; Csibra et al., 2016) have shown that looking
times can be very skewed with a variance that increases with the mean, which
is a typical phenomenon for positive-only random variables. Accordingly, it
has been advocated to analyze looking times on a log scale using the logarithm
as a transformation that stabilizes the variance and reduces skew (Csibra et al.,
2016; Young & Hunter, 2015). On the other hand, reasoning about looking
times in terms of their logarithms is more difficult than un-transformed looking
times, and the habituation curves are usually defined on the natural scale. Thus,
modelling approaches that aim to capture the shape of habituation curves usu-
ally resort to modelling the un-transformed looking times using a normal dis-
tribution for convenience. Other applications assumed Gamma distribution
(L. B. Cohen & Menten, 1981).

The statistical models of habituation are relatively flexible, in a sense that
various distributions can be applied. While the distribution of looking times
is mostly a nuisance factor in the sense that it is not the primary focus of any
analysis, determining which distributions capture the data best may improve
the model performance and in the long term, improve our inferences.

7.3.3 Combining questions
As mentioned previously, the questions we outline here are not independent of
each other. For example, to investigate whether there is a sub-group of infants
that do not show a decline in attention, one needs to define the shape of the
habituation curve for the group of infants that do habituate, and define the
distribution of looking time so that a statistical model can be fit.

The idea behind a coherent modeling framework is as follows: One may de-
fine an ensemble of models that represent various combinations of the theoret-
ical alternatives. These models may be fit to the empirical data simultaneously.
Then, their predictive performance may be assessed in order to either perform
model selection or model averaging (Hinne et al., 2020). Then, the inference
may be carried out at the population level (e.g., what is the proportion of in-
fants that are “non-habituators”, or “what is the average speed of habituation”)
or at the individual level (e.g., “what is the level of attention of an infant follow-
ing the habituation phase”). For the sake of brevity, the current proposal for
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all models in question is not detailed in this article. Interested reader may find
additional information at the project’s open repository: osf.io/jr76y/.

7.3.4 Example: Modeling habituation
To demonstrate how one can study the characteristics of the habituation pro-
cess without relying on habituation criteria, the present section shows a sim-
ulated example using an extension of the habituation model as proposed by
Thomas and Gilmore (2004), which was already used as an illustration in Fig-
ure 7.1. This model may be further extended to include 1) some proportion of
the infants that are “non-habituators”, i.e., those that do not decline in atten-
tion at all, and 2) individual differences such that habituation trajectories may
vary between participants, while adhering to the general habituation curve pre-
scribed by the model. This model then allows inference at the population level
(e.g., the average speed of habituation), and at individual level (e.g., the habitu-
ation level of a particular infant after a particular trial). More details about this
simulation are provided in Appendix 7.A.

For the present illustration, we use parameter settings that are generally fa-
vorable for the use of habituation criteria - relatively low residual attention lev-
els compared to the initial attention level, and relatively low noise in the ob-
servations. Further, in the current settings 90% of the population is set to be
habituating (i.e., have their attention decrease according to the Thomas and
Gilmore (2004) model), whereas 10% are non-habituators (i.e., their attention
level remains at a constant). A realisation instance of this model, assuming 100
participants who undergo 20 habituation trials each, is displayed in Figure 7.2.
The data were generated as follows: First, the infants were randomly assigned
to the “habituator”/“non-habituator” sub-populations. In this instance, 89 in-
fants were habituating and 11 non-habituating. For each of the habituating in-
fants, individual parameters for initial attention levels, residual attention levels,
the speed at which attention decreases over time, and the amount of noise were
randomly drawn from their population distributions. Using these parameters,
the data were simulated according to the Thomas and Gilmore (2004) model.
For the non-habituators, only a constant attention level and noise were ran-
domly drawn from the population distributions, i.e., the data was simulated as
the constant attention level plus noise.

https://osf.io/jr76y/
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Figure 7.2: An example of simulated data from a mixture model of habitua-
tion. Each line presents looking times from an individual infant. Blue lines are
“habituators” whose data are generated from the Thomas and Gilmore (2004)
model, whereas red lines represent “non-habituators” whose data are generated
as a constant plus noise.

Upon fitting this model back to the simulated data, we may discover that
the estimates are relatively close to the true parameter values, suggesting that
the parameters can be recovered accurately, see Table 7.1. In real situation, one
would not commit to a single model before collecting the data, but would
rather consider all models that are theoretically defensible – some alternatives
were discussed in the previous section. Instead of fitting a single model, one
would fit multiple models and perform model comparison or model averaging
(Hinne et al., 2020). For the sake of brevity, we will not perform the model
comparison here.

However, fitting habituation models to empirical data is difficult when the
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95% Credible interval

Parameter True Value Mean SD Lower Upper

µγ 2.30 2.32 0.07 2.17 2.46
σγ 0.25 0.23 0.05 0.15 0.34
µα 0.00 0.28 0.15 -0.05 0.55
σα 0.25 0.26 0.09 0.09 0.46
µβ 2.30 2.26 0.03 2.20 2.32
σβ 0.25 0.21 0.02 0.18 0.25
µδ -6.00 -6.07 0.10 -6.27 -5.90
σδ 0.80 0.83 0.07 0.70 0.99
µσ -0.25 -0.19 0.03 -0.26 -0.13
σσ 0.30 0.29 0.03 0.24 0.35
π 0.90 0.85 0.04 0.77 0.91

Table 7.1: True value and parameter estimates of the example model. See Ap-
pendix 7.A for explanation.

data were collected using habituation criterion. To illustrate how applying a
habituation criterion hinders modeling approaches, let us imagine using the
popular initial 3-3-50% criterion applied to the data shown in Figure 7.2. The
data left after applying the criterion are shown in Figure 7.3. From the per-
spective of the recommendations for testing novelty effects using habituation
criteria (Oakes, 2010), the criterion works quite well in that all of the infants
that pass this criterion come from the population of “habituators”, from which
only one infant did not reach a 50% habituation on the latent level. Further,
the Spearman’s correlation between the number of trials it took to reach the
habituation criterion and the speed of habituation δ is high (rho = 0.873), in-
dicating that the criterion within this parameter setting corresponds quite well
to the latent levels of attention. The only issue in the present example accord-
ing to Oakes’ (2010) recommendations is that the criterion is perhaps too strict,
as it excludes an unnecessarily large number of participants that were actually
habituating (54 out of 89).

These results already hint at the biases that are introduced when applying
habituation criteria. First, as the number of trials correlates with the speed of
habituation, fast habituators are represented with less trials in the data, which
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Figure 7.3: An example of simulated data from a mixture model of habituation
after applying the 3-3-50% habituation criterion. Each line represents looking
times from an individual infant.

will result in an underestimation of the habituation speed. However, infants
who habituate too slow to be detected within the maximum number of trials
are completely excluded from the data, which results in a bias in the opposite
direction — the estimated speed of habituation will be pushed towards higher
values than those generating the data. These biases act as a counterweight and
the resulting bias entirely depends on the interaction between the experimen-
tal procedure (i.e., type of habituation criteria used and the maximum number
of trials) and the parameters of the habituation process. In the present exam-
ple, fitting the habituation model on the data set filtered through the habitua-
tion criterion results in overestimating the speed of habituation in the popula-
tion. Whereas the true data generative process implies that the mean number
of habituation trials that are required to reach 50% habituation is 17.72, the
fitted model would claim that the number of trials is substantially less (12.44,
95%CI [11.15, 13.82]). However, it is in principle possible to construct a sce-
nario where the bias goes in the opposite direction, which occurs when only
negligible number of “slow habituators” are excluded entirely, but there is still



314 CHAPTER 7. RETHINKING HABITUATION

correlation between the number of trials administered and the speed of habitu-
ation (e.g., increasing the maximum number of trials would have that effect in
the present example). The bias should decrease once the habituation criterion
becomes unrelated to the habituation process, which essentially excludes data
at random, though there would be little reason to use habituation criteria in
such situations in the first place. All in all, if one wants to fit habituation mod-
els to empirical data, one cannot use data collected with habituation criteria, as
those would result in biased estimates.

But let us revisit the scenario without using the habituation criterion. We
already showed that when fitting the model back to the simulated data, we can
recover the population parameters. In addition, we can interrogate the model
to answer specific questions about individual differences. First, we may ask
whether the model was able to distinguish the group of “non-habituators” and
“habituators”. Using the parameters estimated by the model, we can compute
the posterior probability for each infant belonging to one sub-population or
the other. Using maximum a posteriori probabilities, we may then classify the
infants into the two groups. In the present simulation, there were 13 “non-
habituators” of which 11 were correctly classified as such, and 2 were incorrectly
classified as “habituators”. All 87 “habituators” were correctly classified as such.
Further, one difficulty with presenting a fixed number of trials to every infant is
that we do not have control over the final habituation levels, which means that
using this procedure to test for a novelty effect seems difficult, as it does not
enable us to “equate” habituation levels between infants. However, instead of
trying to equate infants in terms of their habituation levels, we may embrace the
fact that there are individual differences and study them as such. To facilitate
that, we can estimate the extent to which an individual infant has habituated
during the habituation phase of the experiment directly from their data. Fig-
ure 7.4 shows that the true values are correctly recovered by the model in the
simulation. This quantity then may be used in follow up analyses to account
for the fact that the habituation levels are not equal across participants.

7.3.5 Beyond habituation
So far, the article focused only on what happens during the habituation phase
of the experiment, and how to study the process of habituation more efficiently
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Figure 7.4: The true habituation levels at the 20th trial for each participant,
plotted against the estimated habituation levels. Error bars display the 95%
Credible intervals.

by reducing bias introduced by the infant-controlled paradigm. However, as
was mentioned in the introduction, habituation is often not the primary phe-
nomenon of interest, but is rather used as a tool to study other phenomena. A
common design for habituation studies that seek to find a novelty effect, and
present a set of novel and a set of familiar stimuli after the habituation phase
(commonly known as the “testing” phase) to investigate whether or not the at-
tention towards the novel stimulus is larger than that to the old stimulus. This
section explores alternative designs to demonstrate how modeling approaches
unlock additional possibilities for testing the novelty effect.

The first (and simplest) alternative is to run the habituation phase for a fixed
number of trials, and then immediately follow up with a testing phase - a de-
sign commonly known as a familiarization study. However, instead of simply
testing whether novel trials differ from the old trials, one can first estimate ha-
bituation levels per infant (presented in Figure 7.4) and use these as a covariate
when testing for a novelty preference. Adding habituation level as a covariate
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would enable researchers to take into account the natural variation in habitu-
ation levels and gain more power in the design by explaining away variability
at the baseline. Thus, instead of trying to equate habituation levels experimen-
tally, in this design we attempt to account for in-equal habituation levels that
occur simply because infants differ between each other.

However, alternative designs can be used instead. Consider, for instance,
that researchers want to establish whether a group of infants of certain age can
discriminate between two types of stimuli. In the traditional habituation or fa-
miliarization designs, this question would be answered by testing for a novelty
effect. However, instead of asking the question “is there a novelty effect”, or
possibly “what is the size of the novelty effect”, we may test the question of dis-
tinguishing between the two stimuli more directly, by turning the test towards
individual infants.

To illustrate this idea, consider an experiment where stimulus 1 is presented
for a fixed number of trials, and is then replaced by a second stimulus for a
fixed number of trials. If an infant distinguishes between the two stimuli and
also habituates in general, we would be able to see two separate habituation
curves: one for each stimulus. If an infant does not distinguish between the
two stimuli, we would observe that the infant continues to habituate as if the
first stimulus was unchanged. These two patterns assume that the infant does
habituate (i.e., shows a decrease of attention over a repeated presentation of a
stimulus). We already discussed the possibility that some infants may not show
this pattern, and so it may be the case that there are infants that do not habitu-
ate but distinguish between the stimuli, and infants that do not habituate and
do not distinguish between the stimuli. Figure 7.5 shows an example of the pat-
terns that would arise from this experimental design under the four theoretical
alternatives.

Thus, instead of asking about the average size of the novelty effect, we may
first ask how many infants belong to each group (habituators vs. non-habituators
crossed with discriminating vs. not discriminating). This would make the in-
ference more person-centered, highlighting that, in addition to quantitative
differences, there might be also qualitative differences between these sub-populations
(Haaf & Rouder, 2019).

It may be difficult to detect which infants distinguish between the two stim-
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Figure 7.5: Four alternative outcomes of the sequential habituation phases de-
sign. In the first row, participant is habituating, i.e., their attention decreases
with repeated exposure to the stimuli, whereas in the second row, the partici-
pant is not habituating. In the left column, the participant is able to distinguish
between the two stimuli presented, whereas in the right column the participant
does not. Colored dots joined by lines are the simulated looking times, and
dashed lines show the evolution of the underlying attention levels.

uli among non-habituators because, in the absence of a habituation pattern, the
differences between attention levels may be too small. Thus, the final model
could focus only on the sample split as illustrated in Figure 7.6. First, we ask
the question which infants show a habituation pattern and which infants do
not. Then, we may ask which infants that do habituate also show the ability
to discriminate between the stimuli and which do not. Additionally, we may
estimate individual differences between infants and the variability of the stim-
uli, as well as practice and fatigue effects if the stimulus presentation order is
counter-balanced or randomized across the sample.
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Figure 7.6: Conceptual illustration of types of events that can happen in habit-
uation experiments.

The presented ideas need to be validated empirically, and it is possible that
such designs would not be suitable for every research question that is currently
tested using the habituation paradigm. However, we hope that those ideas pro-
vide inspiration to researchers to go beyond the established experimental de-
signs, possibly by leaning on the power of formal models to construct more
informative designs that tackle their research questions more directly.

7.4 Practical considerations

The previous section of this article presented experimental designs alternative
to those that are currently being used in the habituation literature. Changing
experimental paradigms, however, comes at a cost — whereas it may be rela-
tively straightforward to replicate a study protocol that has been already im-
plemented in the past, implementing novel approaches need additional time,
resources, and effort to balance the design and solve unforeseen issues in order
to collect data of sufficient quality.

In anticipation of such issues with the implementation of new designs, the
current section provides several suggestions and answers to questions that may
arise.
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7.4.1 Fixed number of trials designs

One of the appealing features of the habituation criteria is that they enable re-
searchers to terminate the experiment early, thus not requiring the infant to sit
through the experiment in its maximum length. More broadly, this is the aim
of any method that is considered “infant-controlled”, and so includes model-
ing proposals such as that of Thomas and Gilmore (2004). From this view,
presenting the experiment for a predefined number of stimuli may seem un-
ethical, as abandoning the infant-controlled territory implies that some infants
will be put under the laboratory settings for longer period of time than if some
dynamic criterion was used.

However, as this article argued, our understanding of the infant-controlled
methods is limited, and the very use of such methods precludes us from gain-
ing more insight into the phenomenon itself. Thus, it is currently uncertain
whether the criteria work as desired in the first place, and it is very hard to de-
termine the benefits for individual infants from cutting the experiment shorter.
It stands to question, then, whether minimizing the experiment duration for
individual infants outweighs the fact that the data from those infants are hardly
usable for any purpose other than simply assessing the presence of a novelty ef-
fect, especially given our uncertainty of the underlying mechanism itself.

Employing fixed number of trials designs will necessarily bring the question
of determining an optimal number of trials to be presented to each participant.
Models of habituation benefit from larger number of trials, but empirical re-
search is of course constrained by the infants’ capacity to undergo lengthy ex-
perimental procedures. An important distinction needs to be made here. The
issue of infant-controlled studies is not necessarily that the number of trials
varies between participants, but that the number of trials and the exclusion of
the data is directly related to the habituation process itself. The models dis-
cussed in this article in fact do not require that every infant has the same num-
ber of observations, but merely that the number of data points for each infant
is not related to the underlying phenomenon they intend to model.

This is an important distinction because the currently proposed approaches
accommodate the optimization of trial number while the data collection is run-
ning as long as the reporting is fully transparent. For example, it is entirely pos-
sible to run the experiment in the following fashion. First, determine a range
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of trials that are administered to the infants. For each individual, draw a ran-
dom number from that predefined range. Then, data collection proceeds with
a randomly drawn number of trials for each participant, and we collect infor-
mation such the number of trials it took before the infant started to show signs
of distress, fatigue, fuzziness, or simply dropped out. As the data accumulate
(during a pilot testing but even during the data collection for the main exper-
iment), perform analyses that predict the maximum number of trials before a
critical proportion of participants tends to disengage from the task. Over time,
we settle on a narrower range that is optimized for the current experimental
setup at hand.

To sum up, fixed number of trials designs may be successfully replaced with
a dynamic number of trials designs, if one is careful about not introducing the
biases discussed throughout this article.

7.4.2 Data quality and efficiency in the laboratory setting
Changes in experimental paradigms bring challenges in determining the fine
details of the data collection, which may affect data quality. However, those
challenges may instead prove to be opportunities to improve the efficiency of
the designs, and in turn — improve data quality in the long run.

For example, an important feature of infant-controlled studies is that record-
ing of the looking time needs to be done “online” (in real time), so that the
habituation criteria (or habituation models) may be applied between trials to
determine whether additional trial need to be presented. To meet this need, re-
searchers often record looking times manually during the experiment, a method
which is error-prone, complicates the data collection process, and requires reli-
ability among coders involving training and precise criteria of what constitutes
“looking away” that can be biased if coders are not blind to conditions or stim-
uli. The fact that there is a dedicated software developed to aid researchers in
running habituation studies (Oakes et al., 2019) is a case in point that tackling
these issues is not trivial.

In fixed number of trials designs, on the other hand, the coding of look-
ing times can be entirely done offline after the experiment has been concluded.
By removing online coding, the data collection can become much smoother
and less complex. Further, automated methods for looking times coding may
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be used, such as eye-tracking. Eye-tracking is more objective, time efficient,
and provides higher spatial and temporal resolution than manual coding (Dal-
rymple, Manner, Harmelink, Teska, & Elison, 2018; Hunnius, 2007; Oakes,
2017). Using eye-tracking also opens new possibilities to analyze specific gaze
patterns within the experiments (e.g., how are infants scanning the presented
stimuli), unlocking novel ways in which the data from habituation experiments
could be used, which is impossible with manual coding (Aslin, 2007). On the
other hand, early evidence shows that eye-tracking (and alternative automatic
methods) comes with higher data loss than manual coding (Byers-Heinlein et
al., 2021; Chouinard et al., 2019; ManyBabies Consortium, 2020; Venker et al.,
2020). A possible solution could be combining both approaches.

Another benefit of relying on modeling approaches is that it presents the
opportunity to remove arbitrary criteria for excluding or modifying data for the
sake of cleanliness. In typical habituation studies, infants are excluded from the
analysis for not meeting the habituation criterion. The previous section already
demonstrated that this is not necessary because the data can be analyzed in its
entirety by modelling the possibility that certain infants do not habituate. But
there are other practical issues that relate to excluding data. For example, many
studies define a minimum looking time for a trial to be considered valid. If the
looking time falls below this threshold, the trial is simply discarded and another
trial is run instead. However, discarding trials based on arbitrary thresholds
may mean that we are systematically disregarding an important piece of infor-
mation about the process of habituation. Extremely short looking times could
indicate some sort of dual process, for instance, where the infant first needs to
establish an interest in the stimulus, and if that happens, proceeds to gather in-
formation with the typical process of habituation. It may also be the case that
establishing interest in the stimulus becomes less likely as the infant becomes
habituated to the stimulus. Analyzing short trials may reveal that our under-
standing of the habituation process is incomplete, which would in turn inform
model adaptations to accommodate additional phenomena. In short, model-
ing approaches allow us to consider alternatives to our apriori understanding
of how the data unfolds in reality, rather than coercing the data into a shape
that we expect based on our current knowledge.

While modeling allows us to accommodate many phenomena, it cannot
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be considered as a remedy to any problem encountered during data collection.
Data quality is paramount. We already discussed that using eye-tracking may
improve measurement precision but there are other design factors that need to
be considered. For example, another common practice in habituation studies
is defining a maximum trial duration. If an infant did not look away (suffi-
ciently) within the maximum trial duration, the trial is ended nevertheless and
the maximum time is recorded as the infant’s looking time, which essentially
censors the data. While censoring can be modelled, there are issues with that
approach. First, if the proportion of trials that ended at the maximum is large,
modeling may become difficult as the data misses a lot of information about the
exact shape of the habituation curve. Second, it is questionable whether end-
ing the trial by design does not interfere with the habituation process, as the
to-be habituated stimulus disappearing in front of the infant may elicit other,
unmeasured processes.

Similarly as for determining an optimal number of trials, it is recommend-
able to adjust the stimuli and criteria during pilot studies or data collection until
the maximum trial length and other design factors are optimized. The goal of
setting sensible experimental parameters is to reduce artefacts. A good example
is a study reported by Bergmann and Cristia (2018), whose data from the habit-
uation phase is displayed in Figure 7.7. The number of trials that ended on the
maximum trial duration of 20 sec is relatively small (around 4.4% of all the data
points). Defining a looser maximum trial duration rather than no limit at all
probably resulted in much smoother data collection and, at the same time, does
not severely impede the data analysis, provided that the models are adjusted for
censoring rarely occurring data points. However, the authors also encountered
other data sets, in which censoring of the data was much more prevalent and
hence problematic. Although this is just an anecdotal observation, it demon-
strates that reducing artefacts introduced by the study design should not be
overlooked, regardless whether one uses novel modeling approaches or sticks
to the established experimental paradigms.

7.4.3 Sample size
An important design choice in any study is the sample size necessary to answer
specific research questions with a sufficient degree of certainty. Determining
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Figure 7.7: Plot of real data from Bergmann and Cristia (2018). Points high-
lighted red are trials that are close to the maximum trial length.

the sample size might be relatively straightforward when testing for a novelty
effect in established paradigms, as previous research can provide enough de-
tail about the expected effect sizes necessary for calculating traditional power
analysis (J. Cohen, 1992) or its Bayesian analogue — Bayes factor design analy-
sis (Schönbrodt & Wagenmakers, 2018).

However, with novel paradigms and redefined questions of interest, such
calculations might be more difficult. This can lead to uncertainty as to what
sample sizes to plan for with new designs. Further, with more complex designs
and statistical models, the required sample sizes may become too large. A com-
mon approach to this problem would be to first conduct studies of descriptive
nature using rules of thumb for planning sample sizes, with the hope that such
previous studies would provide enough information to plan future studies with
more care, or to inform the statistical models with prior knowledge (Visser et
al., 2023). An alternative approach would be to conduct sequential designs:
Data collection is continued until a sufficient amount of evidence about the
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question of interest accumulates, or the researcher runs out of resources or
patience (Schönbrodt et al., 2017; Stefan et al., 2019). Sequential designs hold
promising potential to improve the efficiency of experiments, and as such are
valuable especially in contexts where achieving large sample sizes is challeng-
ing or unlikely (Visser et al., 2023). Evidence from different studies may be
integrated to plan new experiments, which would further improve the study
design efficiency over the long run (Stefan et al., 2019). Thus, as our predic-
tions become more specific, we will be able to target increasingly more specific
questions with increasingly efficient experiments (Schönbrodt & Wagenmak-
ers, 2018; Stefan et al., 2019).

7.5 Conclusion, Discussion, & Recommendations
This article summarised the current state of research in the field of habituation
experiments. We have concluded that the performance of methods currently
used to detect habituation is uncertain and needs more investigation. However,
the very use of infant-controlled designs means that extensive validation of such
methods is difficult.

The current proposal argues for re-directing the focus of infant habituation
research to first establish the basic, universal characteristics of the habituation
process rather than using the verbal explanation of the phenomenon as a tool.
Once we can be reasonably confident that we understand, control, and predict
the course of habituation, the process will be easier to use as an experimental
paradigm to study other processes and phenomena.

Based on these challenges, we proposed several remedies. These remedies
will themselves bring additional challenges, and as such it seems appropriate to
group those based on the difficulty of their implementation.

Minor adaptations

First, we propose to shift focus towards experimental designs that do not de-
pend on the infants’ behavior. These may be akin to familiarisation studies
with fixed number of trials, or more elaborate designs that aim to optimize the
number of trials to administer during the data collection.
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Experimental designs that are not conditioned on the infants’ behavior will
lead to us not being able to control or equate attention levels of participants.
Instead, the natural variability in the habituation levels can be accounted for
in the analysis, after the data have been collected. If possible, do not set con-
straints on minimum or maximum number of seconds per trial. If necessary, set
the floor or ceiling levels such that the majority of the data points fit in between
these constraints; run pilot sessions to check that the floor and ceiling is set ap-
propriately. Further, do not exclude participants that meet some criteria from
the data set; instead, involve all participants in the analysis, acknowledging the
heterogeneity in the data to its fullest extent.

We also recommend considering alternative measurement methods for record-
ing looking times of the participants, such as eye-tracking instead of manual
coding.

It is highly advisable to be as transparent as possible; make every detail of
the experiment known to the reader. When presenting the analysis, plot the
raw data so that the source of the study’s conclusions are traceable.

Major adaptations
Experimental designs and analyses should be informed by (formal) theories,
and should be tailored to answer specific research questions.

This adds new challenges in the type of conducting simulation studies to
validate novel statistical models to investigate whether it is even feasible to an-
swer specific questions, but also possibly changing the experimental designs in
more radical way — for example, running two habituation sessions after one
another, instead of running a habituation session followed by a testing session.

These changes should in general lead to better understanding of the habit-
uation phenomenon, and ideally new experimental paradigms emerge that are
more efficient and clear as they target specific theoretical questions with meth-
ods designed to answer them.

Transparency, collaboration, and mixing expertise
The new habituation designs proposed in this article need empirical validation
and further methodological work. As mentioned earlier, one of the challenges
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of fully leaning on formal habituation models to design experiments is the large
uncertainty about which models would fare the best after model comparison
on various data sets. An ideal scenario for reducing this uncertainty would be
to fit the models on existing data sets from various age groups, populations,
and stimuli. Such activity is likely impossible for individual researchers or even
whole research groups.

A way to improve current practices is to introduce more transparency and
foster collaboration between research teams. Transparency can be achieved by
various means: plotting the raw data in the manuscript and complying more
closely to existing reporting standards, sharing the data (including raw data),
code, and materials alongside articles that report substantive findings. In accor-
dance with being fully transparent, this article is accompanied by a repository
with the code that produced all reported results reported, as well as implemen-
tations of various habituation models that were discussed but not reported.
The repository can be found at: osf.io/jr76y/, where updates about fu-
ture developments will be posted to guide researchers interested in modelling
work for habituation.

Despite our hopes for experimental designs with greater information value,
infant research still suffers from limiting factors, such as the relative sparsity of
participants. It may be the case that individual laboratories will not be able to
feasibly collect enough data to provide meaningful evidence about specific re-
search questions. Collaborations between research teams — such as the Many-
Babies, ManyLabs, PsychScience Accelerator, EEGManyPipelines, Many analy-
sis, and variety of other initiatives — will be further gaining prominence and
importance for habituation studies as well.

Lastly, it may seem that the current proposal is needlessly complicated and
putting an unnecessary burden on the empirical researcher to not only be an ex-
pert on the topic of habituation and infant development, but also an expert in
experimental designs, statistical modeling, eye-tracking, and other highly com-
plex tasks that may take years of practice to master. While it is true that the is-
sues raised in this article add complexity, tackling these issues can be embraced
as an opportunity to explore even more interesting ideas. Further, there is no
obligation for individual researchers to master all details of a research program
themselves. Instead, the breadth of the topic of habituation calls for even more

https://osf.io/jr76y/
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active collaborative efforts between experts from different fields.

Open Practices Statement
The code and data used in this article are publicly available at osf.io/jr76y.

https://osf.io/jr76y
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Appendix

7.A Extended habituation model of Thomas and
Gilmore (2004)

Thomas and Gilmore (2004) developed a model which describes the observed
looking times yt for participant at trial t in the following way:

yt ∼ Normal(µt, σ)

µt = α + β exp(−δ(t− 1)2),
(7.1)

where δ is a parameter that determines the speed of the habituation process,
α controls the residual attention level, and α + β together specify the initial
attention level. Examples of data that the model generates is presented in Fig-
ure 7.1. The model is extended in two ways. First, it is assumed that individual
differences exist and so each participant gets their own value of the parameters
α, β, δ, and σ. These parameters are modelled using a hierarchical structure,
therefore estimating the group means and standard deviations for all four pa-
rameters. Second, a “multi-population model” as suggested by L. B. Cohen and
Menten (1981) is specified; that is, the model assumes that the data come from
a mixture of two populations. One population is described by the habituation
process defined above, the other is a group of “non-habituators”, that is infants
who do not, and will not show a decrease of attention. The second group is
modeled by replacing the expression for µt in Equation 7.1 with an intercept
parameter that does not change with t. Further, the original model by Thomas
and Gilmore (2004) uses a Normal distribution for the looking times; in the
present application, a truncated Normal distribution is used to honor the fact
that looking times cannot be smaller than zero. The full model specification
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used in this example is as follows:

yit ∼ Normal(µit, σ)T(0,∞)

µit =

{
γi if zi = 0

αi + βi exp [−δi(t− 1)2] if zi = 1

z ∼ Bernoulli(π)
log(γ) ∼ Normal(µγ, σγ)

log(α) ∼ Normal(µα, σα)

log(β) ∼ Normal(µβ, σβ)

log(δ) ∼ Normal(µδ, σδ)

log(σ) ∼ Normal(µσ, σσ),

(7.2)

a looking time yit of participant i and trial t is distributed according to the
truncated normal distribution. The mean parameter of the distribution is ei-
ther an intercept γi that does not depend on the trial, or a habituation curve
that is conditional on whether or not the infant belongs to the group of “non-
habituators” or “habituators” (indicated by zi = 1 which is driven by the pro-
portion of infants in the population that are “habituators”, π). All parame-
ters are modelled at the individual level in log space to ensure the positivity of
the parameters, assuming a Normally distribution with population means and
standard deviations that are estimated from the data. This allows to model in-
dividual differences (e.g., allowing the model to accommodate slow and fast
habituators) with hierarchical pooling of information across the participants
to improve the individual parameter estimates.
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I don’t want preconceptions. I want to
learn as much as possible.

–Pep Guardiola

Chapter 8

Analytic Posterior Distribution
and Bayes Factor for Pearson

Partial Correlations

This chapter is preprinted as Kucharský, Š., Wagenmakers, E.-J., van den Bergh,
D., and Ly, A. (2023). Analytic posterior distribution and Bayes factor for
Pearson partial correlations. PsyArXiv. doi: 10.31234/osf.io/6muwy
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Abstract

This article outlines a novel Bayesian approach to the testing and estimation of
Pearson partial correlations. By generalizing a Bayesian inference procedure for Pear-
son’s correlation coefficient we obtain analytic expressions for the Bayes factor and for
the (marginal) posterior distribution of a partial correlation coefficient. Full Bayesian
inference can be achieved using only the sample size, the number of controlling vari-
ables and the relevant summary statistics, that is, the sample partial correlation. The
present approach is illustrated with two empirical examples.

8.1 Introduction

ThePearsonpartialcorrelationcoefficientquantifies the lin-
ear relationship between two continuous variables while taking into
account the effects of other (confounding) variables. Under certain

distributional assumptions (e.g., multivariate normality), the partial correla-
tion coincides with a conditional correlation and can therefore be used to assess
conditional (in)dependence between a set of variables (Baba, Shibata, & Sibuya,
2004; Baba & Sibuya, 2005; Lawrance, 1976). This fact is central in Gaussian
Graphical Models (Lauritzen, 1996), where partial correlations are used to map
out unique relationships between a number of variables (i.e., partial correlation
networks; Costantini et al., 2015). For these reasons, inference for partial cor-
relation is included both in popular introductory statistical textbooks (Agresti
& Finlay, 2009; Field, 2017; Lomax & Hahs-Vaughn, 2012; Moore, McCabe,
& Craig, 2012) and statistical software packages (e.g., IBM Corp., 2017; JASP
Team, 2021; Kim, 2015) as a basic statistical tool.

In practical applications, researchers often wish to test whether a popu-
lation partial correlation is zero. The dominant approach is to use frequentist
null hypothesis significance testing, which is already well developed for the case
of a partial correlation (Weatherburn, 1961, pp. 242–263). However, frequen-
tist hypothesis testing comes with several limitations (e.g., Amrhein, Green-
land, & McShane, 2019; Nuzzo, 2014; Wagenmakers, 2007; Wasserstein & Lazar,
2016), one of them being the inability to quantify evidence in favor of the null
hypothesis. In other words, the frequentist test does not discriminate between
‘evidence of absence’ and ‘absence of evidence’ (e.g., Keysers et al., 2020). This



8.1. INTRODUCTION 335

is particularly problematic for partial correlations, because researchers often
wish to claim evidence for the null hypothesis of conditional independence.
In general, it is desirable that a method of testing can quantify evidence in fa-
vor of either conditional independence or conditional dependence (Epskamp,
2017, pp. 240–241).

This frequentist limitation can be overcome within the framework of
Bayesian statistics, namely with Bayes factors (Jeffreys, 1961; Kass & Raftery,
1995). Bayes factor tests for partial correlations have already been proposed by
Wetzels and Wagenmakers (2012), by M. Wang, Chen, Lu, and Dong (2019),
and by Williams and Mulder (2020). First, Wetzels and Wagenmakers (2012)
proposed to test the coefficient indirectly by testing an increase of explained
variance in a linear regression model. However, this procedure yields results
that are sensitive to the direction of the effect (i.e., which of the two variables of
interest is used as the predictor), which is undesirable as partial correlation is an
undirected coefficient. Second, M. Wang et al. (2019) also use a setup from lin-
ear regression with the popular Zellner’s g-prior (Zellner, 1986), but proposed
to test the regression coefficient instead, which effectively leads to converting
the coefficient to a t-statistic. One downside of this approach is that the result-
ing Bayes factor inherits an issue of the Zellner’s g-prior in that it is not infor-
mation consistent (Liang, Paulo, Molina, Clyde, & Berger, 2008). A drawback
common to both approaches is that they do not test the partial correlation di-
rectly, but represent it with a proxy statistic, be it a change in R2 or a coeffi-
cient in a linear regression. This makes it difficult to reason about the implied
prior distribution on the partial correlation coefficient, frustrating the use of
informed priors. Neither approach provides the posterior distribution for the
population partial correlation coefficient, which is of course the central target
for Bayesian parameter estimation.

A third Bayes factor test for partial correlations was introduced by Williams
and Mulder (2020) and Williams (2021), who proposed to fit a full multivariate
normal model to the data with either Wishart or Matrix-F prior distributions
(J. Mulder & Pericchi, 2018) on the covariance matrix. Based on the full sam-
ple covariance matrix it is then possible to obtain Bayes factors for individual
partial correlations through the Savage-Dickey density ratio (Dickey & Lientz,
1970). To obtain the Bayes factor, Williams and Mulder (2020) proposed to use
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either analytic approximations to the posterior distributions, or apply MCMC
sampling. This method is available to the practical researcher with the R pack-
age BGGM (Williams & Mulder, 2019).

Here we introduce a new Bayesian approach to test and estimate partial
correlation coefficients. Our work generalizes the Bayesian development for
Pearson’s correlation coefficient (Ly et al., 2018, 2016b), and inherits many of
its desirable properties. For instance, the complete Bayesian inference can be
conducted with only the relevant summary statistics and is computationally
cheap. Our main results are twofold and address both Bayes factor testing and
Bayesian parameter estimation. First, we provide an expression for the Bayes
factor of a nullity of a partial correlation coefficient. We elaborate how the
proposed Bayes factor fulfils certain desiderata that allow intuitive inferences,
making it an attractive option for a default Bayesian testing method (Bayarri,
Berger, Forte, & García-Donato, 2012; Jeffreys, 1961; Ly et al., 2016b). Second,
we derive an analytic marginal posterior distribution for the partial correlation
coefficient. This posterior distribution facilitates a Bayesian estimation effort.
In general, the inference is carried out on the partial correlation coefficient itself
which also encourages the use of informed prior distributions (e.g., Gronau,
Ly, & Wagenmakers, 2020).

The paper continues as follows: Section 8.2 presents the proposed Bayes
factor and (marginal) posterior for the partial correlation coefficient explicitly.
Section 8.3 highlights two properties of the proposed Bayes factor. Section 8.4
illustrates the method with two examples, and the paper is concluded in Sec-
tion 8.5. All derivations are provided in the appendix.

8.2 Bayesian inference for partial correlation

Interest centers on the population partial correlation ρxy.z that measures the
degree of association betweenX andY after the effects ofk number of control-
ling variablesZ onX andY are removed. We focus on two somewhat different
aspects of Bayesian inference: testing (i.e., “is there evidence for the presence
of an effect?”) and estimation (i.e., “assuming the effect exists, how strong is
it?”). For testing, the relevant question is whether or not the partial correlation
equals zero – more specifically, whether and to what extent the data provide
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support for (or against) the hypothesis that the partial correlation coefficient
equals zero. To address this question we may report the Bayes factor that com-
pares the predictive performance of the null model M0 that operationalizes
the null hypothesis ρxy.z = 0 to the predictive performance of the alternative
modelM1 that operationalizes the alternative hypothesis ρxy.z ∈ (−1, 1). For
estimation, the alternative model is assumed to hold true, wherein an unknown
(population) partial correlation is free to vary between −1 and 1. The goal is
then to infer this unknown parameter based on the available data. To address
this question we report the posterior distribution of the partial correlation.

In Appendix 8.A we provide the detailed derivations of the Bayes factor
and posterior distribution presented in this section. It is assumed that the vari-
ablesX ,Y and thek number of controlling variablesZ are jointly multivariate-
normally distributed. The resulting p = k + 2 multivariate normal distribu-
tion has p(p + 3)/2 number of parameters, but the focus of inference is only
on one of them, namely, ρxy.z . For instance, for k = 0, 1, 2, 3, 4 controlling
variables there are 5, 9, 14, 20 and 27 parameters respectively, thus, 4, 8, 13, 19
and26 so-called nuisance parameters. Analogously, the data from apmultivari-
ate normal distribution can be (sufficiently) summarized by p(p+3)/2 values.
Our derivations show that the use of specific priors result in analytic Bayes fac-
tor and marginal posterior for ρxy.z that solely depend on the sample size, the
number of controlling variables, and the corresponding sample partial corre-
lation rxy.z from the total of p(p + 3)/2 sufficient statistics. This is achieved
in Appendix 8.A by (1) isolating that part of the likelihood that only involves
ρxy,z and its sampled counterpart rxy.z , and by (2) choosing appropriate priors
on the nuisance parameters. For ease of exposition the nuisance parameters are
collected in the symbol θ0, an explicit account is given in Appendix 8.A.

The alternative model includes one additional parameter, namely, the pop-
ulation partial correlation. Hence, the parameters of the alternative model can
be denoted as θ = (θ0, ρxy.z), and the prior on ρxy.z is set independently from
the nuisance parameters as π(θ) = π(θ0)× π(θxy.z).

In accordance with the previous work on the Pearson’s correlation (Ly et
al., 2018), the default prior used for the partial correlation here is a symmetric
beta distribution stretched to the interval−1 to 1. This stretched beta prior has
a single hyperparameter α that governs the concentration of the distribution
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Figure 8.1: Examples of the symmetric stretched beta prior distribution for the
partial correlation ρxy.z defined by four different values for the hyperparameter
α.

around zero: if α = 1, the prior distribution is uniform; when α is large, the
distribution is peaked and centered on the value ρxy.z = 0. Figure 8.1 shows
four examples of the stretched beta prior distribution for ρxy.z using different
values for the α hyperparameter.

With the appropriate priors, as detailed in Equation 8.15 in Appendix 8.A,
on the nuisance parameter θ0 in both models, and the stretched beta prior on
ρxy.z in the alternative model, the Bayes factor for the alternative model over
the null model is given by

BF10 =
B
(
1
2
, α+ n−k−γ−δ−1

2

)
B
(
1
2
, α
) ×

2F1

(
n− k − γ − 1

2
,
n− k − δ − 1

2
;α +

n− k − γ − δ

2
; r2xy.z

)
.

(8.1)
The marginal posterior distribution of ρxy.z under the alternative model is
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given by:

π(ρxy.z | n, k, rxy.z) =
(1− ρ2xy.z)

(2α+n−k−γ−δ−3)/2
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(8.2)
Note that the expressions only depend on the data via the relevant sum-

mary statistic rxy.z , the sample sizen, and the number of conditioning variables
k as promised. The hyperparameters δ and γ can be tuned by the statistician,
but are typically set to zero (see Section 8.3.1). B(a, b) is the beta function,
2F1(a, b; c; z) is the Gaussian hypergeometric function, and Wγ,δ(ñ) is de-

fined in Equation 8.20 in Appendix 8.A.
By substituting ñ = n−k, the number of samples exceeding the number of

controlling variables, we see that the results generalize the Pearson’s correlation
of Ly et al. (2018) in the sense that the Pearson’s correlation is a special case of
the partial correlation when the number of controlling variables is zero (k = 0).

8.3 Properties of the Bayes factor
Bayesian model comparison and selection methods, such as the Bayes factor,
are sensitive to the choice of priors, and this sensitivity does not vanish as the
sample size increases (Bayarri et al., 2012; Kass & Raftery, 1995).

Because of this sensitivity, a considerable effort has been exerted to develop
“objective”, or “default” methods that would provide standard inferences for
typical testing scenarios (Bayarri et al., 2012; Berger, 2006). A pioneer in this
field was Jeffreys (1961) who not only proposed various default Bayesian tests
for common statistical problems, but also provided a set of desiderata for newly
developed tests, such that they provide an intuitive framework for inference
(Bayarri et al., 2012; Ly, Verhagen, & Wagenmakers, 2016a; Ly et al., 2016b).

Here we show that the Bayes factor presented in this article meets Jeffreys’s
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desiderata for Bayes factors: predictive matching and information consistency.

8.3.1 Predictive matching

A Bayes factor is predictively matched if it equals 1 when the Bayes factor is
presented with completely uninformative data, that is, when the data bear no
evidence for either hypothesis.

This occurs when the data are of insufficient size, thus, less than a minimal
sample size needed to distinguish between the null and alternative models. For
these data sets the the Bayes factor should remain indifferent (i.e., BF = 1).

Note that we cannot infer the partial correlation when n ≤ k + 1 as
the sample partial correlation is then undefined. When n = k + 2, we au-
tomatically get rxy.z = ±1, regardless of the value of the population coeffi-
cient. Hence, the minimum sample size is nmin = k + 3. For data sets of size
n < k + 1, we define the Bayes factor to be one. For n = k + 2, we enter the
values rxy.z = 1, into Equation 8.1 and obtain with α̃ = α + n−k−γ−δ−1

2
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(8.3)

Thus, for the Bayes factor to be predictively matched, we require γ = δ = 0.

8.3.2 Information consistency

A Bayes factor is information consistent if it diverges to infinity, thus, falsifies
the null, when the Bayes factor is presented with overwhelmingly informative
data.

Overwhelmingly informative data sets are of sufficient size, thus, n ≥
nmin = k + 3 with rxy.z = 1 or rxy.z = −1, because if the null were true,
then such an event occurs with chance zero. Equation 8.21 and the surround-
ing discussion in the appendix imply that the Bayes factor diverges whenever
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2α+2+ k ≤ n. For a Bayes factor to already diverge at the minimum sample
size, we plugin n = k+ 3 and conclude that information consistency requires
α ≤ 1/2. On the other hand, when rxy.z = ±1 and α > 0 is given, we con-
clude that the Bayes factor diverges whenever n − k ≥ 2α + 2. For instance,
for α = 1 the Bayes factor diverges only when n ≥ k + 4, thus, missing the
information consistency desideratum by one observation. In other words, for
α = 1, we are one observation more reluctant to falsify the null. Analogously,
for α = 20 we require an additional 39 perfectly (partially) correlated observa-
tions before we are willing to falsify the null.

8.4 Two examples

Our first example features a data set from experimental psychology. Lleras, Por-
porino, Burack, and Enns (2011) had n = 40 participants complete a visual
search task. The data showed a relatively high correlation (r = .51) between
‘successful search time’ and ‘rapid resumption’. In a Bayesian reanalysis, we
assigned the correlation coefficient a stretched beta prior with α = 0.5 (ac-
cording to the information consistency requirement explained in Section 8.3.2).
Figure 8.2 shows the resulting inference. In terms of testing, the Bayes factor
BF10 ≈ 33.85 indicates ‘very strong’ evidence in favor of the alternative model
over the null model (cf. Jeffreys, 1961, Appendix B; Lee & Wagenmakers, 2013,
Table 7.1). In terms of estimation, the posterior distribution for Pearson’s ρ
(under the alternative model) is relatively symmetric around 0.49, with a cen-
tral 95% credible that ranges from 0.23 to 0.70.

However, after controlling for participant’s age the sample partial correla-
tion coefficient decreases to almost zero (rxy.z = .01). In a Bayesian reanalysis,
we again assigned the partial correlation coefficient a stretched beta distribu-
tion with α = 0.5. Figure 8.3 shows the resulting inference. In terms of test-
ing, the Bayes factor BF01 ≈ 7.76 indicates ‘moderate’ evidence in favor of
the null model over the alternative model (cf. Jeffreys, 1961, Appendix B; Lee
& Wagenmakers, 2013, Table 7.1). For comparison, Wetzels and Wagenmakers
(2012) reported BF01 = 7.70 and M. Wang et al. (2019) reported BF01 = 2.02.
The method by Williams and Mulder (2020) requires the full sample covariance
matrix of the three variables (‘successful search time’, ‘rapid resumption’, and
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Figure 8.2: Bayesian inference on the Pearson’s correlation coefficient (Ly et al.,
2018) for the data reported in Lleras et al. (2011) (i.e., r = 51, n = 40). The
Bayes factor indicates very strong support for the alternative model over the
null model. The grey dots at ρ = 0 visualize the Savage-Dickey density ratio
(Dickey & Lientz, 1970). Figure concept from JASP (e.g., van Doorn, van den
Bergh, Böhm, et al., 2021).

‘age’) to obtain the Bayes factor for the partial correlation. To our knowledge,
this information is unfortunately not openly available.

In terms of estimation, the posterior distribution for ρxy.z (under the alter-
native model) is relatively symmetric around 0.01, with a central 95% credible
that ranges from −0.30 to 0.32.

Our second example concerns the relation between COVID-19 infections
and air pollution across 55 Italian cities in the period from March 17th to April
7th, 2020. Specifically, Coccia (2021) reported a partial correlation between the
logarithm of COVID-19 infections and the logarithm of the number of days
with increased air pollution, controlling for population density. The summary
statistics that allow a complete Bayesian reanalysis are the sample partial cor-
relation rxy.z = .479, sample size n = 55, and the number of controlling
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BF01 = 7.763

BF10 = 0.129
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Figure 8.3: Bayesian inference on the partial correlation coefficient for the data
reported in Lleras et al. (2011) (i.e., rxy.z = .01, n = 40). After controlling
for participant age, the Bayes factor indicates moderate support for the null
model over the alternative model. The grey dots at ρ = 0 visualize the Savage-
Dickey density ratio (Dickey & Lientz, 1970). Figure concept from JASP (e.g.,
van Doorn, van den Bergh, Böhm, et al., 2021).

variables (population density) k = 1. We again assigned the partial correlation
coefficient a stretched beta prior with α = 0.5. Figure 8.4 shows the result-
ing inference. In terms of testing, the Bayes factor BF10 ≈ 84.70 indicates
‘extreme’ evidence in favor of the alternative model over the null model (cf.
Jeffreys, 1961, Appendix B; Lee & Wagenmakers, 2013, Table 7.1). In terms of
estimation, the posterior distribution for ρxy.z (under the alternative model) is
relatively symmetric around 0.47, with a central 95% credible that ranges from
0.24 to 0.66. The data therefore appear to provide compelling statistical sup-
port for an association between the intensity of air pollution and the suscepti-
bility to COVID-19 infections.

To explore the robustness of this conclusion we may reanalyze the data
from Coccia (2021) using an informed prior that assigns more mass to values of



344 CHAPTER 8. PARTIAL CORRELATION

BF01 = 0.0118
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Figure 8.4: Bayesian inference on the partial correlation coefficient for the data
reported in Coccia (2021). The Bayes factor indicates extreme support for the
alternative model over the null model. The grey dots at ρ = 0 visualize the
Savage-Dickey density ratio (Dickey & Lientz, 1970). Figure concept from
JASP (e.g., van Doorn, van den Bergh, Böhm, et al., 2021).

ρxy.z near zero. Specifically, we assign ρxy.z a stretched beta distribution with
theα hyperparameter set to 20. The result is shown in Figure 8.5. Compared to
the result with a uniform prior, the posterior distribution is now closer to zero,
and Bayes factor is noticeably smaller: BF10 ≈ 29.21. However, the data still
provide strong evidence in favor of the alternative model over the null model.

Instead of picking a single value of the hyperparameter α to explore the ro-
bustness of the result, we may report the Bayes factor for a range of possible
prior specifications (see van Doorn, van den Bergh, Böhm, et al., 2021). Ro-
bustness plot in Figure 8.6 shows Bayes factors for the data from Coccia (2021)
as a function of κ = 1

α
, which can be interpreted as a prior width. For values

of κ close to zero, the predictions from the alternative model become indistin-
guishable from the null model and the Bayes factor decreases to 1 accordingly.
However, for a wide range of priors (starting from κ ≈ 0.25), the Bayes fac-
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Figure 8.5: Bayesian inference on the partial correlation coefficient for the data
reported in Coccia (2021), using the informed prior with α = 20. Compared
to the results based on the uniform prior, the posterior distribution has shifted
toward zero, and the Bayes factor is less compelling; however, the support for
the alternative model over the null model is still strong. The grey dots at ρ = 0
visualize the Savage-Dickey density ratio (Dickey & Lientz, 1970). Figure con-
cept from JASP (e.g., van Doorn, van den Bergh, Böhm, et al., 2021).

tors is relatively stable around 100, indicating that the evidence against the null
hypothesis is robust.

8.5 Concluding remarks
We presented a new approach for Bayesian testing and estimation of a par-
tial correlation coefficient. The framework generalizes previous work on Pear-
son’s correlation coefficient (Ly et al., 2018, 2016b) and inherits several desir-
able properties; for instance, when δ = γ = 0 the Bayes factor is predictively
matched, and when α ≤ 1/2 also information consistent. The inference is
carried out on the partial correlation coefficient itself, as opposed to two previ-
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Figure 8.6: Bayes factor robustness plot (see van Doorn, van den Bergh, Böhm,
et al., 2021) for the partial correlation reported by Coccia (2021): Bayes factor is
plotted as a function of the prior width κ = 1

α
. The evidence in favour of the

alternative model is strong for a wide range of prior specifications.

ous proposals of Bayesian tests of partial correlations. As a result, we obtained
an analytic expression for the Bayes factor and for the posterior distribution of
the partial correlation coefficient. Furthermore, the full inference can be car-
ried out using only the sample size, the number of controlling variables, and the
relevant summary statistics, that is, only the sample partial correlation rxy.z cor-
responding to the target of inference ρxy.z . For these reasons, the methodology
developed here is arguably an attractive option as a default Bayesian inference
procedure for partial correlations.

It is important to note that the Bayesian and frequentist inference for a par-
tial correlation share many key assumptions: the vector of observations must be
independent, and the variables must be (approximately) multivariate-normally
distributed. Although small deviations from these assumptions may not com-
pletely invalidate the results, the coefficient may be especially sensitive to dis-
tortion in case of nonlinear relationships between variables, in the presence of
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outliers, or with significant measurement error (K. Liu, 1988; Osborne & Wa-
ters, 2002; Quade, 2017; Vargha, Bergman, & Delaney, 2013). Whenever re-
searchers have access to the raw data, we recommend that they carefully check
these assumptions; when researchers report original work we encourage them
to publicly archive the (properly anonymized) data, or –at a minimum– plot
the data so that readers may confirm that the analysis is appropriate and infor-
mative (e.g., Wagenmakers et al., 2021).
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Appendix

8.A Derivation of the main results

8.A.1 Reparametrising the multivariate normal model

Let X ∈ R, Y ∈ R be two random variables and Z ∈ Rk a random vector
(k ∈ Z≥0). We consider the random vector W ∈ Rp collecting X , Y , Z ,
where p = k + 2, to follow the multivariate normal distribution. Further,
let n be the number of observations of the random vector W , and summarize
the observed data as follows: d = (n, w̄, S), where w̄ is the vector of sample
means, w̄(j) = n−1

∑n
i w

(j)
i for j ∈ 1, ..., p, and S = n−1(w − w̄)′(w − w̄)

is an average sum of squares and cross-product matrix.
The likelihood of the model is

f(d | µ,Σ) =(2π)−
pn
2 |Σ|−

n
2×

exp
(
−n

2
[tr(Σ−1S) + (w̄ − µ)′Σ−1(w̄ − µ)]

)
,

(8.4)

where tr(.) denotes the trace operator and | . | denotes the determinant, µ is
the vector of population means, and Σ is the population variance-covariance
matrix.

As there are p population means, p variances, and
(
p
2

)
correlations, the

model containsp(p+3)/2parameters. We will remove the nuisance parameters
by carefully setting suitable prior distributions and marginalizing them out of
the likelihood. Specifically, we choose priors such that the nuisance parameters
do not influence the inference about ρxy.z . This can be accomplished by allow-
ing the structure of the parameters (and their priors) to reflect the structure of
the likelihood.

349
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Our approach is to reparametrize the multivariate normal model of the ran-
dom vector W in order to isolate the partial correlation ρxy.z as a separate pa-
rameter. It is then possible to fix the value ofρxy.z to zero (under the null model
M0), or assign it a prior probability distribution (under the alternative model
M1). The desired reparametrization is achieved using the Schur decomposi-
tion of the variance-covariance matrix, which replaces Σ with three sets of pa-
rameters: Σ11.2, Σ22, and B. First, Σ11.2 is the conditional variance-covariance
matrix of the variables X and Y after controlling for variables Z . Σ11.2 can be
decomposed in terms of three parameters: the focal parameter ρxy.z that repre-
sents the partial correlation, and the two standard deviations of the residuals,
σx.z and σy.z , after regressing X and Y on Z , respectively. Second, Σ22 is the
variance-covariance matrix of the controlling variables Z ; third, B is a matrix
of regression coefficients that represent the relation of X and Y to Z .

We achieve the reparametrization by first decomposing Σ into a block ma-
trix,

Σ =

[
Σ11 Σ12

Σ12 Σ22

]
, (8.5)

where Σ11 is a 2× 2 variance-covariance matrix of the variables X and Y , Σ22

is a k× k variance-covariance matrix of the controlling variables Z , and Σ12 =

Σ′
21 is a 2× k matrix of cross-covariances of X with Z , and Y with Z .

To obtain the partial correlation instead of the classic correlation, we use
the Schur complement of Σ11 in Σ defined as Σ11.2 = Σ11 − Σ12Σ

−1
22 Σ21,

which for the multivariate normal model can be interpreted as the conditional
variance-covariance matrix of X and Y given Z . This can be done analogously
with the sample counterpart S provided that S22 is positive definite.

We now need to rewrite the trace in the exponent of the likelihood in Equa-
tion 8.10 in terms of this decomposition. The Schur decomposition allows us
to invert Σ easily as:

Σ−1 =

 Σ−1
11.2 −Σ−1

11.2Σ12Σ
−1
22

−Σ−1
22 Σ21Σ

−1
11.2 Σ−1

22 + Σ−1
22 Σ21Σ

−1
11.2Σ12Σ

−1
22

 .

To let the sample partial covariance appear in the likelihood, we write S as a
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block matrix:

S =

[
S11.2 + S12S

−1
22 S21 S12

S21 S22

]
.

This leads to

tr(Σ−1S) = tr(Σ−1
11.2S11.2) + tr(Σ22S22)

+ tr(Σ−1
11.2S12S

−1
22 S21)− tr(Σ−1

11.2Σ12Σ
−1
22 S21)

− tr(Σ−1
22 Σ21Σ

−1
11.2S12) + tr(Σ−1

22 Σ21Σ
−1
11.2Σ12Σ

−1
22 S22).

(8.6)

The first trace involves the block of interest (i.e., the partial correlation scaled
by the partial variance) and the second trace involves the nuisance covariance
of Z . The last four terms involve the nuisance blocks with respect to the cross-
correlationΣ12, and can be written (by factoring outS22 andΣ11.2) as a quadratic
term in the form

tr
[
S22(S12S

−1
22 − Σ12Σ

−1
22 )

′Σ−1
11.2(S12S

−1
22 − Σ12Σ

−1
22 )
]
,

where we used the cyclic property and linearity of traces, and multiplied by the
identity I = S22S

−1
22 where needed in order to collect the four traces inside of

a single quadratic term, as detailed in the Appendix 8.B. Substituting the four
traces with the quadratic terms leads to

tr(SΣ−1) =tr(S11.2Σ
−1
11.2) + tr(S22Σ

−1
22 )

+tr
[
S22(S12S

−1
22 − Σ12Σ

−1
22 )

′Σ−1
11.2(S12S

−1
22 − Σ12Σ

−1
22 )
]
.

(8.7)

In the above equation, the nuisance block including the terms Σ12Σ
−1
22 can be

interpreted as the linear regression coefficients of X and Y on Z . We write the
matrix as B = Σ12Σ

−1
22 and analogously B̂ = S12S

−1
22 . Using the fact that
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|Σ| = |Σ11.2| × |Σ22|, we arrive at

f(d | µ,Σ) =(2π)−
pn
2 |Σ11.2|−

n
2 |Σ22|−

n
2×

exp
(
− n

2
(w̄ − µ)′Σ−1(w̄ − µ)
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×
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tr(S22Σ
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22 )
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×

exp
(
− n

2
tr
[
S22(B̂− B)′Σ−1

11.2(B̂− B)
] )

.

(8.8)

Equation 8.8 shows that the multivariate normal model can be reparametrized
such that the sets of parameters µ, Σ11.2, Σ22, and B can be integrated out
independently of one another, if the prior factorizes similarly.

8.A.2 Integrating out the nuisance parameters

Equation 8.8 shows that the multivariate normal likelihood factorizes in four
parts, one that involves the parameter of interest, one that involves the nui-
sance block regarding the variance-covariance of the conditioning variables
Z , one that involves the regression of X and Y on Z , and the vector of
means. This decomposition suggests prior distributions of the formπ(µ,Σ) =

π(µ)π(B)π(Σ22)π(Σ11.2). Because µ and B act as location parameters and
Σ22 represents a scaling factor, we choose the following priors: µ ∝ 1, B ∝ 1,
and Σ22 ∝ |Σ22|−(k+1)/2. Note that improper priors generally do not cause
complications for the computation of Bayes factors, with the provisos that the
joint posterior distribution is proper, and that the improper priors are assigned
exclusively to nuisance parameters and emphatically not to the test-relevant pa-
rameter (cf. Ly et al., 2016a; Wagenmakers & Ly, 2023).

Integrating out µ

With improper priors µi ∝ 1 for i ∈ 1, ..., p we can integrate µ out of the
likelihood. This leads to a simple Gaussian integral and costs one degree of
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freedom:∫
exp

(
−1

2
(w̄ − µ)′(n−1Σ)−1(w̄ − µ)

)
dµ = |2πn−1Σ|1/2

= (2πn−1)p/2|Σ|1/2.
(8.9)

The resulting reduced likelihood is

f(d | Σ11.2,Σ,B) =(2π)p(1−n)/2n−p/2|Σ11.2|(1−n)/2|Σ22|(1−n)/2×
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2
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×
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2
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[
S22(B̂− B)′Σ−1

11.2(B̂− B)
] )

,

(8.10)

leaving us with p(p+ 1)/2 parameters.

Integrating out B

To integrate out B, observe that the relevant part of the likelihood is a kernel
of a 2 × k matrix normal distribution with a location matrix B ∈ R2×k, one
2 × 2 scale matrix Σ11.2, and a second, k × k, scale matrix S22. By assigning
priors on Bij ∝ 1 for i ∈ 1, 2, and j ∈ 1, ..., k, we get:

∫
exp

(
−n

2
tr
[
S22(B̂− B)′Σ−1

11.2(B̂− B)
])

dB =(2π)kn−k×

|S22|−1|Σ11.2|k/2,
(8.11)

provided that |S22| > 0 and |Σ11.2| > 0. The resulting reduced likelihood is

f(d | Σ11.2,Σ) =|S22|−1(2π)p(1−n)/2+kn−p/2−k×
|Σ11.2|(1−n+k)/2|Σ22|(1−n)/2×
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2
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−1
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)
×
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2
tr(S22Σ
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22 )
)
,

(8.12)
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leaving us with 3 + k(k + 1)/2 parameters.

Integrating out Σ22

To integrate outΣ22, we collect the relevant part of the likelihood and the prior
and observe that it results in a Wishart integral:∫

|Σ22|−(k+1)/2|Σ22|(1−n)/2 exp
(
−n

2
tr(S22Σ

−1
22 )
)
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22 )
)
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2(n+k)k/2 × Γk
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2

)
× |S22|−(n−1)/2,

(8.13)

whereΓk(.) is the k-variate gamma function. The resulting reduced likelihood
is

f(d | Σ11.2) = |Σ11.2|(1−n+k)/2 exp
(
− n

2
tr(S11.2Σ

−1
11.2)

)
×

2(n+k)k/2 × Γk

(n+ k

2

)
|S22|−(1+n)/2(2π)p(1−n)/2+kn−p/2−k︸ ︷︷ ︸
C(n,k,S22)

, (8.14)

leaving us with just three parameters.

8.A.3 Final derivation of the Bayes factor and the marginal
posterior distribution

The resulting reduced likelihood contains only three parameters: the partial
correlation ρxy.z and the residual variances σ2

x.z and σ2
y.z . Expressing the re-

duced likelihood Equation 8.14 in terms of these quantities yields
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f(sx.z, sy.z, rxy.z | σx.z, σy.z, ρxy.z) =

C(n, k, S22)×(√
1− ρ2xy.zσx.zσy.z

)1−n+k

×

exp
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− n

2(1− ρ2xy.z)
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+
s2y.z
σ2
y.z
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.

which is similar to the likelihood for the Pearson’s correlation coefficient de-
scribed in (Ly et al., 2018, Eq. 8), the only difference being the additional k term
in the exponent of the determinant. This allows us to use of Ly et al. (2018). In
sum, if we use the prior

µ ∝ 1,B ∝ 1,Σ22 ∝ |Σ22|−(k+1)/2, (8.15)
σx.z ∝ σγ−1

x.z , σy.z ∝ σδ−1
y.z , and (8.16)

ρ ∼ stretched-beta(α, α) (8.17)

we then obtain the Bayes factor for the alternative model over the null model is
given by

BF10 =
B
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1
2
, α̃
)

B
(
1
2
, α
) × 2F1

(
n− k − γ − 1

2
,
n− k − δ − 1

2
; α̃ +

1

2
; r2xy.z

)
,

(8.18)
where α̃ = α + n−k−γ−δ−1

2
. For γ = δ = 0, the marginal posterior distribu-

tion of ρxy.z is
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π(ρxy.z | n, k, rxy.z) =
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(8.19)
where Wγ,δ(ñ) is defined in Ly et al. (2018, p. 7) as

Wγ,δ(ñ) =
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ñ−γ
2

)
Γ
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ñ−δ
2

)
Γ
(
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2

)
Γ
(
ñ−δ−1

2

) . (8.20)

Special case of overwhelmingly informative data

With n ≥ nmin, thus, ñ ≥ 3, where ñ = n − k and with r = ±1 a straight-
forward computation shows that

BF10 =
21−2α
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B(α, α)
Γ(α + ñ−1
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)Γ(α + ñ

2
)Γ(α + 1− ñ
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)

. (8.21)

This Bayes factor diverges, when one of the gamma functions in the numerator
has a non-positive argument, thus, whenα+1− ñ

2
≤ 0, hence, whenα+1 ≤

ñ
2

. For this to already occur at n = nmin we require α ≤ 1/2.

8.B Rewriting the trace
Using the inversion of a block matrix, the matrix Σ−1 can be rewritten in a
block form as:

Σ−1 =

 Σ−1
11.2 −Σ−1

11.2Σ12Σ
−1
22

−Σ−1
22 Σ21Σ

−1
11.2 Σ−1

22 + Σ−1
22 Σ21Σ

−1
11.2Σ12Σ

−1
22

 .
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Similarly, we can write S as a block matrix:

S =

[
S11.2 + S12S

−1
22 S21 S12

S21 S22

]
.

Assuming |S22| > 0, we can expand the trace inside of the kernel of the
multivariate normal distribution, and rearrange the terms using the cyclic prop-
erty of traces:
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(8.22)

There are now six traces in the expression. The first two traces involve the
conditional variance-covariance matrix Σ11.2 and the variance-covariance ma-
trix Σ22 of the controlling variables, and their sample counterparts. The latter
four traces involve the cross correlations between the controlled and control-
ling variables. After rearranging the terms in Equation 8.22, the matrices inside
of the four traces have the same dimensions, and so can be collected in a single
trace, using the linearity property of traces. We can rearrange the terms further
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and factor out common terms to obtain the final quadratic expression:
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This quadratic expression replaces the four terms involving the cross correla-
tions:
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I’m going to make a prediction–it could go
either way.

–Ron Atkinson

Chapter 9
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Abstract

Medical professionals, patients, students, and the public at large regularly need to
interpret the outcome of medical tests. These tests are error-prone, however, and the
fact that the outcome is positive (or negative) does not establish with certainty that
the disease is present (or absent). The correct interpretation of the test outcome de-
mands that Bayes’ rule is used to combine the quality of the test (i.e., sensitivity and
specificity) with available background information (i.e., disease prevalence). It is well
known that people find it difficult to understand and apply Bayes’ rule, and that the
correct outcome is often at odds with intuition, especially when a test with good op-
erating characteristics yields a positive result, but the disease is relatively rare. Less well
known is that in practical application, the values of sensitivity, specificity, and preva-
lence are usually associated with considerable uncertainty. The correct interpretation
of a medical test demands that this uncertainty is explicitly acknowledged and properly
taken into account.

To facilitate the correct interpretation of fallible medical tests we introduce the
Binary classification module in the open-source software JASP. This module
explains medical testing through a series of informative visualizations. The module
also allows users to propagate uncertainty in sensitivity, specificity, and prevalence to
derived measure of interest, such as positive predictive value. The module can be used
both in teaching and in medical practice.

9.1 Introduction

Binarius, a 23-year old student at NYU, experiences fatigue and
headache. Binarius fears having contracted malaria after a recent visit
to Central Africa. They decide to take a rapid diagnostic test (RDT)

for malaria and it comes back positive. What is the probability that Binarius has
the disease? In technical terms, what is the positive predictive value? This sce-
nario typifies a ubiquitous problem in medical testing that confronts all med-
ical students at some point during their studies. Despite the importance of
correctly interpreting the test outcome, and despite the apparent simplicity
of the inference, it is well documented that people (including medical profes-
sionals) often get it wrong (Gigerenzer, Gaissmaier, Kurz-Milcke, Schwartz, &
Woloshin, 2007; Gigerenzer & Hoffrage, 1995; Hoffrage & Gigerenzer, 2004;
Marewski & Gigerenzer, 2022; Villejoubert & Mandel, 2002).

Back to Binarius. Suppose you learn that the relevant RDT tends to return
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a positive result for 84 out of every 100 positive cases (i.e., the test’s sensitivity
equals 84%). A common mistake is to conclude that Binarius’s probability of
having the disease is 84%, an error of interpretation known as ‘confusion of the
inverse’, ‘transposing the conditional’, or simply the ‘inverse fallacy’ (Villejou-
bert & Mandel, 2002). In the case of Binarius, the error involves confusing the
conditional probability ofp(positive test |malaria) (which is known to be 84%)
with the desired positive predictive value p(malaria | positive test). The trans-
position is incorrect for two reasons. Firstly, the transposition ignores the test’s
specificity, that is, the probability of returning a negative result given that the
disease is absent – and its complement, the probability of returning a positive
result given that the disease is absent (i.e., the false alarm rate or false positive
rate). For the sake of the argument, suppose that Binarius used an RDT with
a specificity of only 16%; this means that the RDT tends to return a false posi-
tive result for 84 out of 100 negative cases – in other words, the probability of a
positive outcome is 84% if Binarius does not have malaria. But the probability
of a positive outcome was also 84% if he does have malaria; hence, the positive
outcome is completely uninformative about Binarius’ disease status. Secondly,
the transposition also ignores the prevalence of the disease. In order to com-
pute the positive predictive value, we need to take into account not only the
characteristics of the test (i.e., sensitivity and specificity), but also the relevant
background information (Bianchi, Alexander, & Cash, 2009); the outcome of
an otherwise excellent test cannot be interpreted at face value when prevalence
is low (Lau & Aw, 2021). The tendency for people to disregard prevalence (or
not take it into account fully) is known as ‘base-rate neglect’ or the ‘prosecu-
tor’s fallacy’ (Kahneman & Tversky, 1973; Welsh & Navarro, 2012). A concrete
example will be presented shortly.

These errors of reasoning can be eliminated if one is trained in Bayesian in-
ference and one is able to recognize that the problem at hand calls for the appli-
cation of Bayes’ theorem. However, this is often not the case and both medical
professionals and general audiences often need guidance on how to interpret
the outcome of diagnostic medical tests correctly (Bianchi et al., 2009; Kle-
ment & Bandyopadhyay, 2021; Lau & Aw, 2021; Pepe, 2003; Watson, Richter,
& Deeks, 2020; Watson, Whiting, & Brush, 2020). It is noteworthy that even
researchers, supposedly trained to avoid such mistakes, sometimes fail to apply
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the correct reasoning in their scientific work (Suojanen, 1999).

Several remedial teaching programs have been suggested to improve the
interpretation of test results (Galesic, Garcia-Retamero, & Gigerenzer, 2009;
Gigerenzer, 1996; Gigerenzer et al., 2007; Gigerenzer & Hoffrage, 1995; Hof-
frage & Gigerenzer, 2004; Marewski & Gigerenzer, 2022). The key ideas be-
hind these proposals are (1) to discuss concrete examples instead of relying on
general mathematical formulae; (2) to show frequencies and counts of events to
supplement or supplant the traditional representation in terms of proportions
and probabilities; and (3) to explain the same reasoning process from different
perspectives.

These teaching programs generally do not address another fundamental
problem in the interpretation of medical test results, one that has received sur-
prisingly little attention over the years. Specifically, the computation of positive
predictive value is usually demonstrated as if the values for sensitivity, speci-
ficity, and prevalence were known exactly. In reality, these quantities are asso-
ciated with considerable uncertainty (Baron, 1994). A correct interpretation
of the test outcome requires that this uncertainty is first quantified and then
propagated to a derived measure of interest such as positive predictive value.

Here we demonstrate how the correct interpretation of medical tests results
can be facilitated through the use of the Binary Classification module
in JASP, an open-source statistical software program developed at the Uni-
versity of Amsterdam (jasp-stats.org).1 The Binary Classification
module was partly inspired by existing software applications (e.g., Crawford,
Garthwaite, & Betkowska, 2009; Lenhard & Lenhard, 2014; Watson, Richter,
& Deeks, 2020; Watson, Whiting, & Brush, 2020). Below we showcase the
functionality of theBinary Classificationmodule, first for the common
scenario in which the parameter values are assumed to be known exactly, and
then for the more realistic scenario in which they are associated with consider-
able uncertainty.

1Annotated .jasp files with examples are provided at osf.io/kue5h.

https://jasp-stats.org
https://osf.io/kue5h
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9.2 Example 1: Parameters Known Exactly
Consider again the example of Binarius who tested positive for malaria and
wishes to assess the probability that they have actually contracted the disease. In
most educational programs, such an example would be used to expose students
to Bayes’ theorem, which can be employed to calculate the desired positive pre-
dictive value:

p(Condition = positive | Test = positive)

=
p(Condition = positive)× p(Test = positive | Condition = positive)

p(Test = positive)

=
Prevalence × Sensitivity

Prevalence × Sensitivity + (1− Prevalence)× (1− Specificity)
.

(9.1)
Instead of having students apply the theorem manually, JASP calculates all

necessary information and provides detailed output with illustrative figures in
order to build a better intuition for the correct conclusion. Having entered
values for the three key parameters sensitivity, specificity, and prevalence2, the
sole focus can then be on the proper interpretation of the JASP output.

For the interpretation of the malaria test result of Binarius, we take param-
eter values from Berzosa et al. (2018) who reported sensitivity and specificity
of the relevant RDT to be 83.74% and 89.11%, respectively. Deciding on the
value of prevalence is more challenging, as we need to estimate the proportion
of people who have malaria, out of the set of people who have recently visited
Central Africa and show symptoms of fatigue and headache. However, these
symptoms can have many other causes (such as influenza or jet lag); we there-
fore make an educated guess and set prevalence to ∼10%. We enter these esti-
mates in the JASP Binary Classificationmodule as shown in Figure 9.1.
We also choose to display plots that are meant to aid intuition.

Upon receiving the parameter values, JASP immediately updates the calcu-
lations and shows the results in the output panel. The primary output is shown

2In some cases it is appropriate to replace the term prevalence by the term pre-test probability
or base rate probability to indicate that the a priori probability of someone having a disease may
not only depend on the proportion of the population with a condition at a specific point in
time, but on other factors as well – exposure to a pathogen, medical history, etc. Here we will
use these terms interchangeably.
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Figure 9.1: JASP screenshot of the input GUI for the Binary
Classification module with parameters known exactly. All plots
have been selected for display.
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in Table 9.1 and contains the common quantities of interest. We may confirm
that the values of prevalence, sensitivity, and specificity correspond to the val-
ues that were entered in the input panel. This information is followed by the
main entries from a confusion matrix (i.e., the estimated proportion of true
positives, false positives, true negatives, and false negatives) that we would ex-
pect given the properties of the test and the prevalence. Next, the table presents
the positive and negative predictive value, and their complements false discov-
ery rate and false omission rate, respectively. Complements are also presented
for sensitivity and specificity, that is, false negative rate and false positive rate,
respectively. Finally, the table also presents general accuracy, that is, the propor-
tion of cases for which the test outcome corresponds to the underlying condi-
tion, regardless of whether it is positive or negative.

Reading the results directly from the table, we would estimate Binarius’s
probability of having malaria to be about 46% – the positive test result has
considerably increased the probability of Binarius having malaria (as the start-
ing prevalence was 10%), but the most likely scenario remains that Binarius does
not have malaria.

Obtaining the correct answer with JASP may be a straightforward task, but
understanding how is it derived requires more insight. JASP provides a collec-
tion of figures that examine the problem from different perspectives in order
to build an intuition for the underlying reasoning without resorting to math-
ematical formulae. Below we will discuss the figures one at a time. Table 9.2
provides an overview of the available figures, including how they can increase
understanding of the concepts behind binary classification.

Figure 9.2 shows how the base rate probability of having the disease is up-
dated upon observing either a negative or a positive test result. This output can
be requested by selecting theProbability positiveoption in the JASP in-
put panel. The red orange bars show that before obtaining the test result, the
probability of Binarius having malaria was 10%. The cyan bars show the prob-
ability that Binarius has malaria after obtaining the test result; if the test would
have been negative, the probability would have decreased; however, the test was
positive, and the probability that Binarius has malaria equals about 46%.

To help create an intuition of how prevalence, sensitivity, and specificity
together determine the interpretation of a test result, Figures 9.3, 9.4, 9.5, and
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Estimate

Prevalence 0.1000
Sensitivity 0.8374
Specificity 0.8911
True positive 0.0837
False positive 0.0980
True negative 0.8020
False negative 0.0163
Positive predictive value 0.4607
Negative predictive value 0.9801
False discovery rate 0.5393
False omission rate 0.0199
False positive rate 0.1089
False negative rate 0.1626
Accuracy 0.8857

Table 9.1: Excerpt from the primary JASP output table for the malaria example
of Binarius, with parameters known exactly. The top three entries (i.e., preva-
lence, sensitivity, and specificity) determine the values for the entries below.
The table in JASP features additional columns that contain mathematical no-
tation and a verbal description.
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Name Description & Use-case

Figure 9.2 Probability
positive

Depicts the probability of having the disease (1) before any test
was conducted, (2) after a negative test, or (3) after a positive
test. Provides a visual representation of how the probability
changes depending on the test’s outcome.

Figure 9.3 Icon plot Displays a theoretical population in terms of icons (i.e., in a
frequency format, Galesic et al., 2009; Gigerenzer & Hof-
frage, 1995). Provides a first insight into Bayes’ theorem.

Figure 9.4 Area plot Represents a theoretical population in terms of rectangular
areas. Provides a more detailed insight into Bayes’ theorem by
separating the effects of prevalence, sensitivity, and specificity
into three independent axes. Inspired by Sanderson (2019).

Figure 9.5 Alluvial plot Shows the four cells in a confusion matrix as colored links be-
tween “Condition” and “Test” scaled by their proportion in a
population. Helps visualize sizes of the cells in relation to the
total positive cases or total positive tests.

Figure 9.6 Signal detec-
tion

Represents the population from a signal detection perspec-
tive. Provides visual justification for threshold, a concept that
is important to understand the figures below.

Figure 9.7 ROC curve Traces the true positive rate against the false positive rate for
different values of threshold, creating the classical ROC curve
useful to understand the diagnostic characteristics of the test.

Figure 9.8 TOC curve An alternative to the ROC plot that takes prevalence into ac-
count. Compared to the ROC, this plot is useful when the
sizes of the four individual cells in a confusion matrix are im-
portant.

Figure 9.9 PR curve Traces the positive predictive value against recall for differ-
ent values of threshold is useful in asymmetric scenarios (i.e.,
when prevalence is low).

Figure 9.10a Test char-
acteristics
against
threshold

Provides the same information as ROC, but with sensitivity
and specificity plotted separately as a function of the thres-
hold, making the threshold values explicit. Useful to under-
stand how moving the threshold makes the test more or less
conservative.

Figure 9.10b Predictive
values against
threshold

PPV and NPV shown separately as a function of the thres-
hold. Useful to understand how making the test more or less
conservative affects the interpretation of the test result.

Figure 9.10c Predictive
values against
prevalence

PPV and NPV shown separately as a function of prevalence.
Useful to visualize how prevalence affects the outcome of the
test result.

Table 9.2: Overview of figures in JASP meant to foster intuition for the correct
interpretation of medical test outcomes.
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Figure 9.2: Probability of having the disease under different scenarios: Before
testing, after obtaining a negative test, and after obtaining a positive test. Out-
put from JASP.

9.6 show a representation of a hypothetical population, segmented by disease
status and by whether or not they tested negative or positive.

People often have a better intuition for counts than for proportions (e.g.,
Galesic et al., 2009; Gigerenzer et al., 2007; Gigerenzer & Hoffrage, 1995). This
can be exploited by presenting the relevant information as an icon plot. For in-
stance, Figure 9.3 displays the situation as a population of one hundred icons.
Given that prevalence is relatively low (90 out of 100 people do not have the
disease) and specificity is relatively high, most of the population would be true
negative; here, about 80 in 100 (the blue icons). However, even with a rela-
tively high specificity, we nevertheless obtain a number of false positive cases;
here, about 10 in 100 (the yellow icons). This number outweighs the number
of true positives in the population; here, about 8 in 100 (the green icons), and
so even after Binarius tested positive it is somewhat more likely that they are
false positive than true positive.

Figure 9.4 (the area plot) builds on the intuition from the icon plot, but
adds more information at the expense of representing the quantities of inter-
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Figure 9.3: The icon plot displays a hypothetical population of a 100 people
that either have or do not have the disease, and test either negative or positive.
Output from JASP.

est with rectangular areas instead of counts. Specifically, the plot is divided
into four rectangles corresponding to false negative, true negative, true posi-
tive, and false positive cases, which are arranged along three axes: prevalence
on the bottom, sensitivity on the left, and specificity on the right. The ar-
eas of the individual rectangles are easily computed by multiplying appropri-
ate quantities. For example, the green ‘True positive’ area corresponds to the
proportion of the population that contains the disease and that would be cor-
rectly identified by a positive test. Therefore we can calculate the area of the
green rectangle by multiplying the lengths of its adjacent sides: prevalence ×
sensitivity = 0.1 × 0.8374 = 0.08374. Similarly, the orange ‘False positive’
area corresponds to the proportion of the population that does not contain
the disease but is incorrectly tested positive. Thus, the area of the rectangle is
(1− prevalence)× (1− specificity) = 0.9× 0.1089 = 0.09801. The PPV is
represented as the proportion of true positive cases relative to the proportion
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of cases that tested positive, a sum of the ‘True positive’ and ‘False positive’ rect-
angles (highlighted in the plot by a dashed line). Thus, the PPV is calculated
as:

PPV =
Green rectangle

Green rectangle + Orange rectangle
=

0.08374

0.08374 + 0.09801
≈ 0.46.

(9.2)
Thus, area plots such as Figure 9.4 can serve as a visual aid in applying Bayes’

theorem. The advantage of this layout is that changing either prevalence, sensi-
tivity, or specificity alters only a single aspect of the rectangles, which facilitates
a better understanding of how the three parameters affect the interpretation
of the test outcome. For example, increasing prevalence would increase the
width of the green rectangle and decrease the width of the orange rectangle
while keeping their heights constant, meaning that the proportion ‘True pos-
itives’ increases and the proportion ‘False positives’ decreases. Thus, increas-
ing (decreasing) prevalence while keeping sensitivity and specificity constant
can be easily seen to increase (decrease) the PPV. The area plot was inspired by
Sanderson (2019); to the best of our knowledge it has not yet been applied in
educational practice, other than by ourselves.

Figure 9.5 shows the same information as the previous figures but rear-
ranged in a so-called ‘alluvial plot’ (Brunson, 2020); the left bar ‘Condition’
shows the proportion of the population that either has the disease (‘Positive’)
or not (‘Negative’), whereas the right bar ‘Test’ shows the proportion of the
population that tested ‘Positive’ or ‘Negative’. The colored links that connect
the two bars correspond to true positives, false positives, false negatives, and
true negatives. For example, the green link corresponds to people who have the
disease and also test positive; the orange link corresponds to people who do not
have the disease but test positive.

Figure 9.6 shows the testing scenario through the lens of signal detection
theory (Lee, 2008; Paulewicz & Blaut, 2020). For people who do not have the
disease, the values of a hypothetical ‘Marker’ variable are assumed to follow a
standard normal ‘noise’ distribution. For people who do have the disease, the
‘Marker’ values follow a ‘signal’ distribution that is shifted to the right of the
‘noise’ distribution. Here, the two distributions are weighted by prevalence;
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Figure 9.4: The area plot displays the proportions of true positives, false posi-
tives, false negatives, and true negatives as rectangles on a unit square. Output
from JASP.

for our running example, this means that the area under the ‘noise’ distribu-
tion integrates to 0.9 whereas the area under the ‘signal’ distribution integrates
to 0.1. Next, we introduce a ‘decision threshold’ (i.e., the dashed vertical line).
When the ‘Marker’ value falls below (vs. above) the threshold, the test result
is labeled as ‘negative’ (vs. ‘positive’). The threshold divides each of the two
distributions into two parts, creating four areas that correspond to the false
negative, true negative, true positive, and false positive cases. With the distri-
butions fixed, heightening the decision threshold will increase specificity (i.e.,
more true negative cases and fewer false positive cases) but decrease sensitivity
(i.e., more false negative cases and fewer true positive cases).

The trade-off between sensitivity and specificity introduced by varying the
decision threshold is important to understand, as it is a basic idea behind un-
derstanding or potentially constructing new diagnostic tests. To evaluate the
performance of a binary classification model, we can plot quantities such as
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Figure 9.5: The alluvial plot. The ‘Condition’ bar on the left represents the true
proportion of positive vs. negative cases in the population, whereas the ‘Test’
bar represents the proportion of those who test positive vs. negative. The links
between the bars represent four possible combinations of the ‘Condition’ and
‘Test’. Output from JASP.

sensitivity and specificity against each other for varying threshold values. This
is illustrated by Figures 9.7, 9.8, and 9.9.

Figure 9.7 shows the popular ROC (Receiving Operating Characteristic)
curve (Hoo, Candlish, & Teare, 2017). In the ROC plot, the x-axis represents
the false positive rate, which measures the proportion of true negative cases that
are incorrectly classified as positive (i.e., 1−specificity), whereas the y-axis rep-
resents the true positive rate, indicating the proportion of true positive cases
that are correctly classified as positive (i.e., sensitivity). As the decision thres-
hold is ‘pulled through’ the distributions it traces out the relation between
the false positive rate and the true positive rate: the ROC curve. The shape
of the ROC curve helps researchers assess the performance of a classification
model. A completely random classifier would result in a diagonal line (shown
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Figure 9.6: A signal detection theory perspective on the binary classification
problem. Output from JASP.

as a dashed line in the plot) – the signal distribution and the noise distribu-
tion would overlap completely, and hence the false positive rate would equal
the true positive rate. In contrast, a perfect classifier would create a curve that
rises sharply from the origin to the upper left corner (100% sensitivity and 0%
false positive rate). The area enclosed between the solid curve and the dashed
diagonal can therefore be interpreted as an overall measure for the performance
of the test. Note that the ROC does not feature prevalence.

Figure 9.8 shows the TOC (Total Operating Characteristic) curve (Pontius
& Si, 2014). In the TOC plot, the x-axis represents the proportion of true pos-
itives plus the proportion of false positives, whereas the y-axis represents the
proportion of true positives. By moving the decision threshold through the
distributions the TOC curve is traced out. The curve is surrounded by a paral-
lelogram that defines the theoretically possible bounds of the curve, given the
restrictions imposed by the specified prevalence. In some situations, the TOC
plot can be more informative than the ROC plot, as it is informed not only by
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Figure 9.7: A receiving operating characteristic plot. The curve depicts values
of true positive rate and false positive rate for different values of the decision
threshold. The closer the curved line is to the diagonal dashed line, the lower
the diagnostic value of the test. The grey dot represents the value at the decision
threshold shown in Figure 9.6. Output from JASP.

sensitivity and specificity, but also by prevalence. Specifically, the plot is con-
structed such that it features all four elements of the confusion matrix (i.e., false
negative, true negative, true positive, and false positive cases), by considering
the distance of the curve to each of the sides of the parallelogram (Pontius & Si,
2014). Because the y-axis shows the proportion of true positives, the distance to
the bottom side of the parallelogram corresponds to the proportion of true pos-
itives. The top side of the parallelogram is drawn at the value of prevalence, that
is, the proportion of positive cases in the population. Therefore, the distance
of the curve to the top side of the parallelogram corresponds to the proportion
of false negatives. Along the horizontal axis, the distance between the left and
right side of the parallelogram is the complement of prevalence, that is, the pro-
portion of negative cases in the population. The TOC curve splits that distance
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Figure 9.8: A total operating characteristic plot. The curve depicts proportions
of true positives and true positives + false positives for different values of the
threshold. The closer the curved line is to the diagonal dashed line, the lower
the diagnostic value of the test. The grey dot represents the value at the decision
threshold shown in Figure 9.6. Output from JASP.

in two parts, corresponding to the proportion of true negatives and false posi-
tives; the distance of the curve to the right side of the parallelogram corresponds
to the proportion of true negatives, and the distance to the left side corresponds
to the proportion of false positives. A completely random test would result in
a diagonal line (shown as a dashed line in the plot). When the curve is closer to
the upper left corner of the parallelogram, the test results in fewer false positives
and false negatives, and more true positives and true negatives. A perfect clas-
sifier would create a curve that rises sharply from the origin to the upper-left
corner of the parallelogram, indicating that the classifier judges all cases that
have the disease to be positive, while having zero false-positive cases.

An alternative view of the TOC curve comes from considering the predic-
tive value of a positive test that Binarius obtained. Notice that the y-axis shows
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the numerator and thex-axis shows the denominator of Equation 9.1. The cur-
rent threshold (depicted as a grey point) results in ≈0.08 on the y-axis, com-
pared to ≈ 0.08 + 0.1 = 0.18 on the x-axis, corresponding to the calculation
of the PPV derived in Equation 9.2. In general, to obtain high PPV, the test
threshold should be set to a value that results in a high value on the y-axis rela-
tive to the value on the x-axis.

Figure 9.9: A precision-recall plot. The curve depicts precision and recall for
different values of the threshold. The closer the curved line is to the prevalence
(dashed line), the lower the diagnostic value of the test. Output from JASP.

Figure 9.9 shows the so-called precision-recall or PR curve (Cook & Ra-
madas, 2020). The PR curve focuses on two key metrics: ‘precision’ (i.e., pos-
itive predictive value) on the y-axis and ‘recall’ (i.e., sensitivity) on the x-axis.
The focus on positive cases in this plot is particularly useful when negative cases
dominate the population, making metrics such as overall accuracy less informa-
tive. Specifically, increasing sensitivity by decreasing the test’s threshold results
in a seemingly counterintuitive effect of decreasing positive predictive value. As
the test becomes less conservative, it becomes better at detecting positive cases,
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but also indicate more negative cases as positives. The set of negative cases that
tested positive eventually start to dominate the set of positive cases that tested
positive. A good test will result in a curve that turns sharply around the upper-
right corner, indicating high precision and high recall. In contrast, a poor test
would result in a curve that turns sharply around the lower-right corner and
following the value of ‘prevalence’ (the dashed line) for PPV for any value of
sensitivity, indicating that no matter what threshold we choose, obtaining a
positive test does not change the base-rate probability of having the disease.

The ROC curve, the TOC curve, and the PR curve each highlight how two
test characteristics trade off when the threshold is varied. These plots are useful
to assess the general diagnostic value of the test: the larger the ‘area under the
curve’ in each of the plots, the more diagnostic the test outcome, irrespective
of the specific value for the threshold (Faraggi & Reiser, 2002; Pontius & Si,
2014; Sofaer, Hoeting, & Jarnevich, 2019). One downside of these plots is that
the threshold values remain implicit; for instance, it is not possible to consider
an ROC curve and learn about the false and true positive rates that accompany
a threshold of, say, 1.2.

As a remedy, these curve plots can be supplemented with graphs where the
two relevant characteristics are plotted separately as a function of a third quan-
tity of explicit interest. For example, Figure 9.10 shows three panels. In panel
(a), sensitivity and specificity are plotted separately as a function of threshold;
in panel (b), PPV and NPV are plotted separately as a function of threshold;
and in panel (c), PPV and NPV are plotted as a function of prevalence. We now
discuss these panels in more detail.

First, Figure 9.10a shows the same trade-off as the ROC curve in 9.7 as it
displays sensitivity and specificity when the threshold is set to different values.
However, the threshold values are explicitly plotted on the x-axis, whereas sen-
sitivity and specificity have their own separate curves on the y-axis. As a result,
it now becomes clear that as threshold increases (i.e., the test becomes more
conservative), sensitivity decreases and specificity increases.

Sensitivity and specificity are crucial to assess the performance of the test in-
dependent of prevalence. However, in a diagnostic scenario, we do care about
prevalence as it directly affects the diagnosis. Instead of focusing on sensitiv-
ity and specificity, we may therefore wish to consider the positive and negative
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(a) Test characteristics by threshold

(b) PPV and NPV by threshold (c) PPV and NPV by prevalence

Figure 9.10: Trade-offs between two characteristics (y-axis) as a function of a
third variable set to vary (x-axis). Plots on the left let threshold vary on the x-
axis, whereas the plot on the right varies prevalence. The plot on the top shows
sensitivity and specificity (i.e., test characteristics independent of prevalence),
whereas the plots on the bottom show PPV and NPV (and thus take prevalence
into account). Output from JASP.
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predictive values. These values are shown in Figure 9.10b. When the thres-
hold is set extremely low, essentially all cases test positive. This has the effect
that a positive test conveys hardly any information and thus the PPV remains
close to the base-rate probability. Conversely, as almost no cases are tested neg-
ative, obtaining a negative test conveys considerable information and thus the
NPV tends towards 100%. As the threshold increases, the test becomes more
and more conservative. As a result, obtaining a positive test provides more and
more information and so PPV increases, whereas NPV decreases. At the ex-
treme, the test is so conservative that to obtain a positive test one must have the
disease, and therefore PPV tends towards 100%. In that case, however, essen-
tially everyone tests negative, and so obtaining a negative test does not update
the base-rate probability that one does not have the disease.

Plotting the NPV and PPV against the threshold is useful to understand
how threshold affects the interpretation of a test outcome. However, in a typ-
ical medical scenario, the threshold is often already set to a fixed value and so
inspecting how our results would have changed were the threshold set to a dif-
ferent value is perhaps not of immediate interest. What is of immediate inter-
est, however, is how our conclusions would change if prevalence were different
from what we assume. After all, the value of prevalence of 10% we set for the
example of Binarius was just an educated guess, and it is likely that medical
professionals would disagree about the best value to use. To understand how
much our conclusions would change if prevalence were different, Figure 9.10c
shows PPV and NPV as a function of prevalence. For example, while the PPV
is around 0.46 under our original prevalence estimate of 10% prevalence, if that
estimate had been set to 15% then the PPV would have been comfortably above
50%; and if the estimate had been 5% then the PPV would have been less than
30%. Interestingly, by changing only the estimate of prevalence, the values of
both PPV and NPV can attain any arbitrary value. It is therefore clear that
the correctness of our conclusions depends heavily on the correctness of our
assumptions concerning prevalence.

Having examined the diagnostic test from many different angles, it would
appear we are now in a good position to address the key question: “What is Bi-
narius’s probability that they actually have malaria after having received a pos-
itive test?” Analogous to the analyses presented above, the traditional analysis
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presented in typical textbook scenarios would have us believe that Binarius has
contracted malaria with a probability of ≈ 46%. However, we have already
seen that the conclusions depend critically on the actual value of prevalence
and the characteristics of the test. Therefore, we must ask ourselves how con-
fident we really are that the prevalence is exactly 10%? Moreover, was the study
reported by Berzosa et al. (2018) based on a large enough sample such that it
would be reasonable to assume that sensitivity and specificity are exactly equal
to 83.74% and 89.11%, respectively? Where there is room for doubt, there is a
need for propagation of uncertainty. The next section demonstrates how un-
certainty in prevalence, sensitivity, specificity can be taken into account when
drawing conclusions from a fallible test.

9.3 Example 2: Parameters Subject to Uncertainty

The previous section outlined how to interpret the outcome of a medical test
assuming known values of the three parameters: sensitivity, specificity, and
prevalence. However, in almost every practical situation the values for these
parameters are not known exactly. Sensitivity and specificity are based on es-
timates from previous studies with a limited number of participants, and so
are themselves subject to measurement error and therefore uncertain. More-
over, sensitivity and specificity may change depending on when the disease was
contracted, on viral load, and other relevant factors.

Prevalence is often even more uncertain; it may be estimated with relatively
high certainty at the level of an entire country, but often this is not the most
appropriate level of analysis. For instance, in the case of Binarius, we know
that they live in New York, that they just returned from a trip to Africa, and
that they experience some symptoms typical for malaria. For Binarius, the rele-
vant prevalence is not the base rate of malaria across the entire US population.
Rather, what is relevant is the prior probability that Binarius has the disease,
taking into account all of the background information. However, such back-
ground information does not determine a single correct value of ‘prevalence’.
Instead, it identifies a range of values that are relatively plausible.

To the untrained eye, it is not immediately evident how this uncertainty
ought to affect our inference, as it needs to be propagated through our calcu-
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lations of the desired quantities of interest. Typically, medical tests should be
accompanied by an information leaflet that reports estimates of sensitivity and
specificity with some quantification of (un)certainty, such as confidence inter-
vals. In the classical paradigm, we can apply different methods to propagate
the uncertainty about sensitivity and specificity to calculate (for instance) the
positive predictive value, while holding the value of prevalence fixed (Mercaldo,
Lau, & Zhou, 2007; Zou, 2004).

An arguably more general and intuitive approach to propagate uncertainty
is to use Bayesian inference. From the Bayesian perspective, the parameters (i.e.,
sensitivity, specificity, and prevalence) are considered unknown to begin with
(Baron, 1994; Crawford et al., 2009; Mossman & Berger, 2001). Moreover, the
Bayesian approach provides a natural way to update beliefs, that is, to combine
prior uncertainty with available data in order to quantify posterior uncertainty.
The starting point of a Bayesian analysis is to assign prior distributions to the
parameters; these distributions reflect the relative plausibility for their values,
before having seen the data. All three parameters range from 0 to 1, and this
means that the family of beta distributions provides a natural and flexible set
of candidate priors (cf. Albert, 2009; Bolstad, 2007; Wagenmakers & Matzke,
2023).

The beta distribution for an unknown proportion θ features two param-
eters, α and β, and the prior assignment is usually denoted θ ∼ beta(α, β).
The mean of the beta distribution is α/(α + β); therefore, when α is larger
than β, the mean for θ is larger than 1/2. Also, when α and β both grow large,
the distribution becomes increasingly peaked around its mean, indicating more
certainty about what values for θ are plausible. A beta(1, 1) distribution is uni-
form from 0 to 1, and a beta (100, 100) distribution is relatively peaked around
θ = 1/2. One may heuristically interpret the values for α and β as the number
of hypothetical previously seen successes and failures, respectively.

For the analysis of medical tests, Mossman and Berger (2001) recommend
to assign prevalence, sensitivity, and specificity each a so-called Jeffreys prior
(Jeffreys, 1961; Ly, Marsman, Verhagen, Grasman, & Wagenmakers, 2017), a
beta distribution with both α and β equal to one half: B(1/2, 1/2). This U-
shaped prior assigns most probability mass on values near 0 and 1, with rela-
tively less mass on values in between. Alternative priors are also possible, see
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Tuyl, Gerlach, and Mengersen (2008).
The main advantage of assigning each of the three parameters a beta prior

distribution is that incoming data (e.g., the number of true positives and false
negatives obtained from a study) result in an update of knowledge that is highly
convenient. Specifically, when a beta prior distribution is updated with a cer-
tain number of ‘successes’ and ‘failures’ (i.e., binomial data), the posterior dis-
tribution is also a beta distribution, but with updated shape parameters. This
general property is known as conjugacy (Diaconis & Ylvisaker, 1979; Raiffa &
Schlaifer, 1961). For instance, when a diagnostic test from a study yields a partic-
ular number of true positives (a), false negatives (b), true negatives (c), and false
positives (d), the Jeffreys beta priors for sensitivity and specificity are updated
to the following beta posterior distributions (Mossman & Berger, 2001):

sensitivity ∼ B(1/2 + a, 1/2 + b)

specificity ∼ B(1/2 + c, 1/2 + d).
(9.3)

Optionally, if we consider the sample reported in the study representative
of the population of interest, we may also update prevalence with the available
data:

prevalence ∼ B(1/2 + a+ b, 1/2 + c+ d). (9.4)

Alternatively, in the presence of strong background knowledge we may want
to use informed priors for prevalence instead.

With the posterior probabilities in place it is then relatively simple to prop-
agate the uncertainty, as one can draw random values from the posterior dis-
tributions and compute the desired quantity of interest (Mossman & Berger,
2001). Repeating this sampling process many times leads to approximately cor-
rect uncertainty distributions for any derived quantity of interest, and the error
of approximation can be made arbitrarily small by increasing the number of
samples that are drawn from the posterior distributions; typically a few thou-
sand draws suffice for highly precise estimates.

Although this principled Bayesian approach works well in general (Moss-
man & Berger, 2001), it does overlook two subtle ideas that can be leveraged to
our advantage. The first idea builds on the fact that it is often reasonable to
assume that the performance of a diagnostic test is better than chance; in the
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hypothetical case of a diagnostic test that performs reliably worse than chance,
we can simply switch the labels that it predicts, thereby constructing a new
test that performs better than chance.3 The model can accommodate the as-
sumption that a test performs better than chance by imposing the following
constraint on the parameters:

sensitivity ≥ 1− specificity. (9.5)

From a signal detection perspective, this constraint corresponds to restricting
the distance between the ‘noise’ and ‘signal’ distribution to be positive: d′ ≥ 0

(Lee, 2008; Paulewicz & Blaut, 2020).
The second idea follows directly from adhering to the Bayesian adage that

all available information ought to be taken into account. When we observe
a positive (or negative) test outcome, that result itself provides information
about the unknown parameters, despite the fact that we do not know whether
or not the test result was actually correct (Winkler & Smith, 2004). For exam-
ple, when Binarius tested positive, we know that they are either true positive
or false positive. In the true positive case, prevalence should be updated by one
positive case and sensitivity should be updated by one correctly classified case.
In the false positive case, prevalence should be updated by one negative case and
specificity should be updated by one incorrectly classified case. This results in
posterior distributions that are essentially mixtures of the two possible options
(Winkler & Smith, 2004).

Thus, when we wish to assess Binarius’s probability that they have malaria
given that the test was positive, we need to take into account that the test came
out positive in the first place. We do that by first updating the parameters, and
only then calculating the positive predictive value using Equation 9.1 (Winkler
& Smith, 2004). Depending on the amount of certainty about the parameters
before obtaining the positive test, this correction may or may not make a mean-
ingful difference. When there is a a high degree of uncertainty to begin with,
it may lead to a large enough difference to change the outcome of the medical
diagnosis (Winkler & Smith, 2004).

Now that the prior distributions have been defined, the updating rules are

3In practice, if a test performs worse than chance, it would of course be wise to investigate
the reason for the anomalous behavior.
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Figure 9.11: JASP screenshot of the input GUI for the Binary
Classification module with parameters subject to uncertainty.

known, and the parameter restrictions have been implemented, we may revisit
the case of Binarius and conduct a Bayesian analysis that acknowledges the un-
certainty in the three key parameters.

We start with the Jeffreys B(1/2, 1/2) priors on sensitivity and specificity
(Mossman & Berger, 2001). In the sample from Berzosa et al. (2018) there were
963 negative cases (as indicated by the gold standard PCR method) of which
the RDT correctly identified 835 as negative. There were also 761 cases that
tested positive using the RDT method, of which 102 were false positives. Thus,
the data is comprised of 761 − 102 = 659 true positives, 102 false positives,
963− 835 = 128 false negatives, and 835 true negatives. Since Binarius tested
positive, we also add one observed positive test to the data.

As for prevalence, the study by Berzosa et al. (2018) was conducted in Equa-
torial Guinea, and the prevalence of the disease in that country has arguably
limited relevance for students from NYU such as Binarius. Thus, we should
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not update prevalence with the data from the study by Berzosa et al. (2018).
However, Binarius did recently visit Central Africa, so the prevalence of malaria
in the US is also of limited relevance. In addition, Binarius suffers from fatigue
and headache. The prevalence estimate that would be relevant is for students
at NYU who have recently visited Central Africa and afterwards experience fa-
tigue and headache. Unfortunately, no prevalence information is available for
this specific group, and a large range of values may appear plausible. We there-
fore assign prevalence a weakly informative prior: prevalence ∼ B(2, 20). This
prior is centered around a prevalence value of 0.1 that was used in the case of
fixed parameters, but is associated with considerable uncertainty; 95% of the
probability mass falls between ≈0.02 and ≈0.24. Lastly, we will impose the
restriction that the test works better than chance.

The input panel of the JASP analysis is displayed in Figure 9.11. JASP uses
the general-purpose Markov chain Monte Carlo program ‘JAGS’ (Plummer,
2003) to draw samples from the posterior distributions. Once JAGS has fin-
ished sampling, summary results are displayed in the output panel.

The main JASP output table (not shown) presents numerical information
that summarizes the posterior uncertainty. Here we display the full poste-
rior distributions of the quantities of interest; in JASP, these can be obtained
by ticking the option Estimates in the Plots section, and then selecting
Prevalence, Sensitivity, Specificity, and Positive predictive
value. The resulting output is displayed in Figure 9.12.

For prevalence, the posterior mean equals 0.11 with a 95% central credible
interval ranging from 0.02–0.27; for sensitivity, the posterior mean equals 0.84,
95%CI = [0.81, 0.86], whereas the posterior mean for specificity equals 0.89,
95%CI = [0.87, 0.91].

As for Binarius’s probability that they have malaria, the posterior mean
equals ≈0.43. However, the uncertainty associated with that point estimate is
considerable: 95% of the posterior mass falls between 0.10 and 0.73. Thus, while
the positive test outcome has noticeably increased the probability that Bina-
rius contracted malaria (as can be appreciated by contrasting the posterior dis-
tribution for positive predictive value with the B(2, 20) prior distribution for
prevalence4), we are still quite unsure about the probability that Binarius has

4This can be done in the Binary Classification module by selecting the option
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Figure 9.12: Posterior distributions of prevalence, sensitivity, specificity, and
positive predictive value. The entire distributions are plotted as density esti-
mates, with the black dot corresponding to the mean, the thick black line to
the 67% and the thin black line to the 95% central credible interval, respectively.
Output from JASP.

malaria.
In general terms, the data reported by Berzosa et al. (2018) has allowed sensi-

tivity and specificity to be estimated with relative high certainty: the posterior
distributions are relatively narrow. However, the B(2, 20) prior distribution
for prevalence reflects considerable uncertainty, and this is not much reduced
by the observation of Binarius’s positive test result. This high uncertainty in
prevalence combines with the uncertainty in sensitivity and specificity to yield
an even greater uncertainty in positive predictive value.

To illustrate how uncertainty in the three parameters affects the conclu-
sions, Figure 9.13 displays the same plots as Figure 9.10, but now with 95% cred-
ible intervals around the posterior means. Figure 9.13a shows estimates of sen-
sitivity and specificity for different threshold values. The credible intervals are
narrow, suggesting that the posterior uncertainty is small, thanks to the rela-
tively large sample size of the study conducted by Berzosa et al. (2018) and the
fact that sensitivity and specificity are directly estimated from the data: uncer-
tainty in prevalence does not play a role.

Probability positive in the Plots section.
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(a) Test characteristics by threshold

(b) PPV and NPV by threshold (c) PPV and NPV by prevalence

Figure 9.13: Trade-offs between two characteristics (y-axis) as a function of a
third variable set to vary (x-axis). Plots on the left let threshold vary on the x-
axis, whereas the plot on the right varies prevalence. The plot on the top shows
sensitivity and specificity (i.e., test characteristics independent of prevalence),
whereas the plots on the bottom show PPV and NPV (and thus take preva-
lence into account). Ribbons around the lines depict the 95% central credible
intervals. Output from JASP.
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Figure 9.13b shows PPV and NPV as a function of the threshold; the pos-
terior uncertainty for these parameters is much larger, as indicated by the wide
credible intervals. Sensitivity and specificity are relatively precisely estimated,
and this means that the uncertainty in PPV and NPV is driven largely by the
uncertainty in prevalence.

For a deeper appreciation of the effect of uncertainty in prevalence, Fig-
ure 9.13c shows posterior means of PPV and NPV and their 95% credible inter-
vals for various fixed values of prevalence. The plot demonstrates that for any
single value of prevalence, both PPV and NPV can be estimated precisely: their
posterior distributions are relatively narrow. In other words, sensitivity and
specificity are estimated relatively precisely, and consequently PPV and NPV
can also be determined relatively precisely, just as long as the value of prevalence
is known. However, as our knowledge of the base-rate is relatively imprecise,
so is our final estimate of PPV.

The impact of prior uncertainty in prevalence can be further demonstrated
by altering it. Imagine that NYU would have monitored the health of students
who return from a study trip to Central Africa and show symptoms of malaria,
and that NYU’s records show that 50 out of 550 of these students had in fact
contracted malaria. We could use that information as a prior for prevalence:
B(50.5, 500.5). This greatly reduces our uncertainty in the base rate probabil-
ity that Binarius has the disease, and as a result our uncertainty that Binarius has
the disease after testing positive is also much reduced, as shown in Figure 9.14.

In sum, it may matter greatly whether or not the analysis assumes that
prevalence, sensitivity, and specificity are known exactly. After quantifying and
incorporating the uncertainty in the three parameters, the probability that Bi-
narius has the disease is associated with a surprisingly large amount of uncer-
tainty. This example highlights that one should consider all sources of uncer-
tainty when drawing conclusions from a fallible medical test.

9.4 Concluding Comments
This manuscript presented a tutorial-style exposition on drawing correct con-
clusions from a fallible medical test. First, we discussed the standard problem in
which parameters are assumed to be known exactly, and the conclusion is based
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Figure 9.14: Posterior distributions of prevalence, sensitivity, specificity, and
positive predictive value, after using an informed prior on prevalence. The
entire distributions are plotted as density estimates, with the black dot corre-
sponding to the mean, the thick black line to the 67% and the thin black line to
the 95% central credible interval, respectively. Output from JASP.

on a a straightforward application of the rules of probability theory, namely
Bayes’ theorem. The relevant section presented a collection of partly overlap-
ping approaches for explaining the solution from different perspectives, with
the goal to strengthen the intuition without relying on mathematical expres-
sions.

Although the standard problem is commonplace in introductory texts ex-
plaining Bayes’ theorem, the solution is arguably not truly Bayesian; a fully
Bayesian solution is to acknowledge and quantify all uncertainty, and partic-
ularly the uncertainty with respect to the values for the three key parameters
sensitivity, specificity, and prevalence. The second part of this tutorial therefore
focused on how to express and propagate this uncertainty, leaning on visual in-
tuition rather than on mathematical derivations. By presenting the problem
from different perspectives, we demonstrated how different sources of uncer-
tainty interact, and how the largest sources of uncertainty may be identified.

The final example highlighted how the current uncertainty may be reduced
by incorporating additional sources of background information. This hints
at another feature of Bayesian reasoning, reflected in Dennis Lindley’s adage
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“Today’s posterior is tomorrow’s prior” (Lindley, 1972, p. 2): by adding new
sources of information more and more uncertainty can be eliminated. This in-
formation can take different forms. Often, new information consist of recently
collected observations or measurements, but it may just as well consist of rele-
vant background knowledge that has become available at some point in time;
in the latter case, the exact same data (e.g., a positive test result) may warrant a
very different conclusion.

This way of reasoning should feel natural, as we rarely have at our disposal
only a single piece of information when making a medical diagnosis; instead, we
usually have access to the medical history of the patient, exposure to risk factors,
other symptoms, and part of this knowledge becomes available sequentially,
over the course of interacting with the patient. As more information becomes
available, the medical professional will continually adjust and sharpen their
opinion. From this perspective, the distinction between ‘prevalence’ (‘base-
rate’, ‘prior probability’) and ‘positive predictive value’ (‘posterior probability’)
becomes semantic, as both concepts express the probability of having the dis-
ease for the individual patient, given all information available at a certain point
in time.

One of the main messages of this manuscript is that the Binary
Classification module in JASP can assist in the proper interpretation of
test outcomes, an important goal that has proven elusive using formal meth-
ods of instruction that rest on a pen-and-paper application of Bayes’ rule. The
module can act as a cognitive prosthesis, or as an inoculation against the per-
vasive bias to undervalue the impact of prevalence. Instead of carrying out the
calculations by hand, one only needs to be able to input the relevant values
and interpret the output. This aspect becomes even more important when un-
certainty about the three parameters needs to be quantified and propagated to
derived measures of interest, such as positive and negative predictive value.

Armed with JASP, medical professionals can prevent themselves from falling
for the base-rate fallacy, and they can easily quantify the uncertainty in their in-
ferences. Medical students can learn to reason about medical testing without
having to learn the application of Bayes’ theorem by heart: instead, a few mouse
clicks yield all of the necessary information, either through a table or a figure.

The Binary Classification module is not only useful for students
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and doctors, but also for patients: at-home medical testing is becoming more
commonplace, including tests for infectious diseases, pregnancy, and more (Jean
et al., 2022), and may become especially beneficial for vulnerable populations
by increasing the accessibility of care (Hubach et al., 2021; Kattari et al., in press;
Rasti, 2022). It is important that patients who take tests at home without the
support of a medical professional are provided with information that allows
them to draw correct conclusions. Ideally, tests that are sold in pharmacies for
at-home testing should come with the required information to carry out the
inference including assessing the uncertainty (Tidy, Shine, Oke, & Hayward,
2018). Thus, even the general population can benefit from a tool that allows a
principled assessment of an outcome of a medical test, without falling for com-
mon fallacies.

For those interested in the use of the Binary Classification module
in JASP, we prepared annotated .jasp files that are available at osf.io/kue5h.
One of the files includes the running example presented in this manuscript. For
those who are more interested in the methodological aspects, we also provide
a .jasp file that contains the JAGS model as implemented in the JAGS module
of JASP. These files can be easily downloaded, and subsequently opened and
modified in the JASP application (jasp-stats.org).

Open Practices Statement
The JASP module used in this article is openly available as part of the JASP
code base (github.com/jasp-stats/jaspLearnBayes). The annotated
.jasp files are available at osf.io/kue5h.

Declarations
The authors declare their involvement in the open-source software package
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Bayesian statistics accessible to a broader group of researchers and students.
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Abstract

JASP is open-source software that aims to make statistical methodology available
to a wide audience. JASP’s user-friendly interface enables students, teachers, and re-
searchers to conduct complex analyses in an instant, allowing the focus to lie on the
interpretation of the results rather than on the underlying computer code. JASP in-
cludes both well-established and state-of-the-art methods and presently offers a full-
fledged, modern replacement for commercial software such as SPSS or Minitab. JASP
has been developed primarily at the University of Amsterdam and is now supported
by a Community of several universities and colleges.

10.1 Introduction

In 2012 we initiated the development of the open-source statistics pro-
gram JASP (jasp-stats.org) at the University of Amsterdam. The
original goal of JASP was to make Bayesian statistics and frequentist statis-

tics equally accessible: the aim therefore was to provide a Bayesian addition to
SPSS, but open-source and friendlier to use. As more and more frequentist
functionality was added to JASP, this objective shifted and it became increas-
ingly realistic to aim for a wholesale replacement of SPSS. We have now arrived
at this stage.

Currently, hundreds of universities worldwide use JASP to support their
statistics education (see Figure 10.1). This is possible in part because JASP is
available in several languages: English, Dutch, German, Spanish, Portuguese,
French, Galician, Polish, Russian, Chinese, Japanese, and Indonesian.

It is impossible to discuss or even summarize all of JASP’s functionality
concisely – currently, JASP uses 475 different R packages (jasp-stats.org/
r-package-list) spread out across seven standard analysis techniques (de-
scriptive statistics, t-tests, ANOVA, mixed models, regression, frequencies, and
factor analysis) and 25 modules that the user can activate and deactivate at will
(e.g., for power analysis, meta-analysis, structural equation modeling, etc.). Be-
low we present seven sample analyses, but first we would like to draw attention
to some important features that distinguish JASP from most other statistics
programs.

https://jasp-stats.org
https://jasp-stats.org/r-package-list
https://jasp-stats.org/r-package-list
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Figure 10.1: The 292 universities (in 67 countries) we know of that use JASP in
their statistics teaching. JASP is currently downloaded about 75,000 times per
month.

10.2 Characteristic Features of JASP
The development of JASP has been driven by desiderata of ease of use, accessi-
bility, clarity, reproducibility, sustainability, and statistical inclusiveness. These
desiderata are reflected in the following characteristic features:

• JASP has a graphical user interface (GUI). This means that the user
selects options from a menu, just like in SPSS. Note that the JASP GUI
is 100% reproducible – a saved .jasp file contains not only the data, the
results, and any annotations, but also the ticked analysis options.

• JASP allows the user to store the corresponding R code for standard
analyses. In JASP, the relationship between R code and GUI is a two-way
street: modifications to the GUI change the R code, but modifications
to the R code change the options checked in the GUI. In this way, JASP
can be controlled both by R code and by the menu. We hope to achieve
full integration with R this year.

• The JASP GUI provides immediate feedback. For instance, if the
‘mean’ option is checked in the input panel, then in the output panel
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the mean is added directly to the corresponding table; if the ‘mean’ op-
tion is unchecked and the ‘median’ option is checked instead, then the
effect of these actions is also immediately visible: the mean is replaced by
the median. In this way, the student is invited to discover interactively
what certain statistical procedures do.

• JASP is founded on the principle of ‘progressive disclosure’. Initially,
the user is presented with relatively simple output – often a single table
with the primary results. Additional information is within reach, but
requires the user to select it first. This makes it clearer what the connec-
tion is between input and output; it also prevents the user from being
overwhelmed with results and not seeing the forest for the trees.

• JASP provides extensive help files that are available by clicking the ‘i’
icon on top of each analysis. These help files document the input op-
tions, list the R packages used, and provide relevant references. Analy-
ses aimed at statistics students are accompanied by an introductory
text button that incorporates explanations of the analysis directly into
the analysis output. This makes it easier for statistical novices to under-
stand the main concepts behind the analysis. In the future, we plan to
expand on this functionality.

• Older statistics programs are often cluttered – over the years they have
gradually added more and more functionality without paying sufficient
attention to organisation. In JASP, we strive for clarity by offering more
complex functionality in separate tabs and in modules that need to be
activated separately.

• In JASP, all output elements – figures, tables – can be provided with
custom user annotations. This way, teachers can provide data-specific
explanations, or students can ask questions. Annotations recently also
allow LATEX code for typesetting mathematical equations (see Figure 10.11
for an example) and embedding videos.

• JASP is open-source. This means that anyone can install and use JASP
without any obligation, financial or otherwise. We take this opportunity
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to denounce SPSS’s revenue model.1 The annual SPSS campus licences
are priced relatively low so that universities continue to use the pro-
gram for education, thereby making their students dependent on SPSS.
Alumni will then advocate the use of SPSS at the companies and health-
care institutions at which they work; however, in these non-academic
contexts a single SPSS licence quickly costs a small fortune – annually.
An open-source fanatic might argue that universities that deploy SPSS
are unwittingly complicit in wasting public money and creating an ex-
pensive lifelong addiction for their alumni. To be clear, the amount of
money involved is astronomical. The SPSS website states that 80 per cent
of US universities and colleges use SPSS. That amounts to about 4,000
institutions; if each institution pays $25,000 a year, then US academia
alone transfers $100 million to IBM – every year. This situation becomes
all the more glaring in the realization that SPSS is mainly used for trivial
analyses (e.g. standard ANOVA and linear or logistic regression). For
more complex analyses, data professionals use other programs, such as R
, Python, or Julia.

• Transitioning to JASP from other GUI statistical software is easy. In our
experience, anybody who is used to SPSS, Stata, SAS, Minitab, and alike
finds JASP intuitive and does not require additional training. Given
JASP’s integrated R code support it is also easy to complement JASP
with R if desired. JASP is fully encapsulated, meaning that the code
and dependencies available in JASP remain fixed (within a specific ver-
sion). Maintaining JASP on workstations is easier for ICT departments
than maintaining differentR ,Python, orJulia versions and their pack-
ages. Thus, JASP is an ideal stepping stone for organizations that wish to
transition away from GUI software towards scripting statistical pipelines
with code, but are saddled with technical debt or shortage of expertise or
resources.

• JASP does not use any tracking. We do not collect any user data
whatsoever in the software itself. The data and analyses loaded in

1The issues raised here are common to all closed-source software that follows a pay-to-use
business model – SPSS is not unique in this regard. Eventually, all commercial statistical soft-
ware programs lead to a more or less severe vendor lock-in.
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JASP are completely confidential. JASP does not contain any
malware; see jasp-stats.org/2018/01/23/softpedia-review
-award-jasp for an independent review. We may collect some of your
data if you decide to share it with us, as outlined in our privacy policy at
jasp-stats.org/privacy.

• JASP is designed by universities, for universities, and is therefore
closely aligned with current teaching and research practices. A mod-
est example is that the tables in JASP are formatted in ‘APA’ style, i.e.
without vertical lines. Another example is that JASP has specific mod-
ules tailored to education, such as the ‘Learn Bayes’ module and the re-
cently added ‘Learn Stats’ module. Furthermore, JASP has a built-in
‘Data Library’ with more than 50 example data sets based on popular
course books and scientific articles. The library is also available online
at johnnydoorn.github.io/DataLibraryBookdown. The JASP
website contains a comprehensive listing of books, articles, YouTube
videos, and other instructional materials on JASP (jasp-stats.org/
resources).

• JASP provides traditional statistical procedures such as ANOVA and
regression, but also includes state-of-the-art analyses that are useful
both in academic research and in applied statistics. These analyses are
mostly available in specific JASP modules (e.g. machine learning, qual-
ity control, network analysis, SEM, auditing, time series, etc.).

• JASP provides relatively many Bayesian methods, and so there may be
a misconception that JASP is specifically Bayesian software. This im-
pression is incorrect – JASP has a wide variety of both Bayesian and
frequentist methods.

• Modules in JASP are essentially R packages with a couple of additional
files that define the GUI. For R developers it is relatively easy to create
a new module for JASP. In the future, we aim to establish an Online
Module Library that will provide users the opportunity to upload and
download user-contributed modules.

https://jasp-stats.org/2018/01/23/softpedia-review-award-jasp
https://jasp-stats.org/2018/01/23/softpedia-review-award-jasp
https://jasp-stats.org/privacy
https://johnnydoorn.github.io/DataLibraryBookdown
https://jasp-stats.org/resources
https://jasp-stats.org/resources
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• In JASP, much attention has been paid to the quality of figures, in
accordance with ‘A Compendium of Clean Graphs in R’, accessible at
shinyapps.org/apps/RGraphCompendium. The aim is to provide
figures that are elegant, insightful, and ‘publication-ready’. The figures
can be edited internally, but they can also be saved (e.g., as a pdf or in
Powerpoint format) for further external editing.

• JASP is developed by a dedicated team of software developers, post-
docs, and PhD students. This team is in direct contact with users
through the JASP GitHub repository (github.com/jasp-stats/
jasp-issues), which enables efficient processing of bug reports and
feature requests.

• An important part of our effort is to adhere to best practices in soft-
ware development. This means that we test our code (both manu-
ally and automatically), conduct code review, implement version con-
trol, and work with continuous integration pipelines. We also vali-
date the software as it is being developed and maintained; that is,
we compare our results to those produced by other statistical software
in order to ensure that JASP yields the same results (or diverges for
good reason); for more information, see jasp-stats.github.io/
jasp-verification-project/.

• Recently we started the JASP Community, a consortium of institu-
tions of higher learning that are joining forces to ensure that JASP can
continue to be actively developed in the future. The current list of mem-
ber institutions can be found at jasp-stats.org/cooperative
-institutional-members.

This list of features is not exhaustive, and like all software, JASP can only
be properly appreciated when it is applied in practice. To give a more com-
plete impression of JASP, we therefore present seven example analyses on the
following topics: (1) Descriptive Statistics, (2) the Bayesian t-test, (3) the Learn
Stats module, (4) the Learn Bayes module, (5) the Distributions module, (6)
Network analysis, and (7) Time series & Forecasting.

https://shinyapps.org/apps/RGraphCompendium
https://github.com/jasp-stats/jasp-issues
https://github.com/jasp-stats/jasp-issues
https://jasp-stats.github.io/jasp-verification-project/
https://jasp-stats.github.io/jasp-verification-project/
https://jasp-stats.org/cooperative-institutional-members
https://jasp-stats.org/cooperative-institutional-members
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Figure 10.2: Spreadsheet overview of the Adam Sandler data in JASP.

10.3 Example 1: Descriptive Statistics
At start-up, the user can choose to enter data (using an internal data editor)
or open a data file. In this example, we open a data file from the JASP Data
Library. From the main menu, we navigate via Open → Data Library →
4.Regression to the ‘Adam Sandler’ data set. This data set contains a list of
31 movies from 2000 to 2015 starring Adam Sandler. After opening the data
file, the data are displayed in a spreadsheet format, with one row per movie (see
Figure 10.2). The relevant dependent variables are ‘Freshness’ (i.e., an estimate
of the movie’s quality on a scale of 0 to 1, provided by the movie website ‘Rotten
Tomatoes’) and ‘Box Office ($M)’ (i.e., how many millions of US dollars the
film earned at the box office).

For a first impression of the data, we choose Descriptives on the ribbon
at the top. Part of the corresponding interface is shown in Figure 10.3. The user
can use ‘drag-and-drop’ to make a selection among the available variables. Of
the selected variables, a table is then immediately generated that includes the
mean and standard deviation. The table can be modified at will.

We open the tab Basic plots and check the option Correlation
plots. The result is shown in Figure 10.4. In this figure, the histograms show
that the variables are unlikely to be normally distributed; the scatter plot sug-
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Figure 10.3: Drag-and-drop selection of the Adam Sandler variables ‘Freshness’
and ‘Box Office ($M)’ for the purpose of descriptive statistics.

gests that relatively good Adam Sandler movies do not attract more audiences
than relatively bad Adam Sandler movies.

10.4 Example 2: A Bayesian T-test of the Facial
Feedback Hypothesis

In 2016, we were involved in a ‘Registered Replication Report’ of the facial feed-
back hypothesis (Wagenmakers, Beek, et al., 2016). Briefly, the study examined
whether participants found cartoons to be funnier when they clamped a pen
between their teeth (i.e., with the facial muscles in the smile position) rather
than between their lips (i.e., with the facial muscles in the pout position). The
project involved 17 replication experiments with a combined total of 1894 par-
ticipants; here we analyze only the data from the experiment conducted at the
University of Amsterdam. After applying preregistered exclusion criteria, this
experiment involved 130 participants who each scored four cartoons for fun-
niness; 65 participants were assigned to the ‘teeth’ condition, and the other 65
were assigned to the ‘lips’ condition. Descriptive statistics show that the mean
funniness rating was 4.94 in the teeth condition (SD = 1.14), and 4.79 in the lips
condition (SD = 1.30). A frequentist independent t test gives a p-value of 0.48



402 CHAPTER 10. STATISTICS WITH JASP

F
re

sh
ne

ss
B

ox
 O

ffi
ce

 (
$M

)

Freshness

0 0.2 0.4 0.6 0.8

D
en

si
ty

Box Office ($M)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200

0 50 100 150 200

D
en

si
ty

Figure 10.4: Correlation plot of the Adam Sandler data in JASP. The right-
most data point in the scatter plot is for the 2010 movie ‘Grown Ups,’ which
grossed an impressive $162 million but was rated only 10 percent ‘fresh’.

and a t-value lower than 1. This, of course, gives no reason to reject the null
hypothesis. But to what extent do these data now provide support for the null
hypothesis? In other words, is there absence of evidence, or is there evidence
for absence? To determine this, we can perform a Bayesian t test in JASP.

Via T-Tests (on the ribbon at the top) → Bayesian→ Independent
Samples T-Tests we activate the Bayesian t-test interface. Using drag-and-
drop, we select the relevant variables (i.e., ‘condition’ and ‘meanCartoonRat-
ing’). Ticking the ‘Raincloud plots’ option results in Figure 10.5.

Next, we perform the Bayesian test. This requires a specification of the
population effect sizes δ deemed plausible under the alternative hypothesisH1.
We can simply use the standard options (i.e., the default prior distributions
for hypothesis testing), but it is more interesting to think a little deeper about
the available background knowledge. After all, this is a replication experiment,
and it is therefore defensible to let the prior distribution for effect size be de-
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Figure 10.5: Average “funniness ratings” of four cartoons, separately for 65 par-
ticipants holding a pen between their teeth (“Teeth”) and 65 participants hold-
ing a pen between their lips (“Lips”). From left to right: a rain cloud plot (with
jitter), box plots, and non-parametric density estimators.

termined by the posterior distribution of the original experiment (Verhagen &
Wagenmakers, 2014). That posterior distribution is approximately normally
distributed with mean of 0.4 and a standard deviation of 0.25.

In the GUI, we open the tab Prior and define the desired normal distri-
bution. Finally, we indicate that the alternative hypothesis has a direction (i.e.
cartoons would be funnier with a pen between the teeth, not less funny). Tick-
ing the option Plots→ Prior and posterior results in Figure 10.6. This
figure provides a relatively complete overview of the Bayesian inference. In par-
ticular, we see that the Bayes factor, BF0+, is equal to 2.035. This means that the
null hypothesis (i.e., H0 : δ = 0) predicted the observed data about two times
better than the alternative hypothesis (i.e., H+ : δ ∼ N(0.4, 0.252)I(0,∞)).
Such weight of evidence would increase the prior probability for H0 from 0.50
to 2.035/3.035 ≈ 0.67 – according to Jeffreys (1961, Appendix B), this is not
worth more than a bare mention. Thus, for comparing these two specific hy-
potheses, there is ‘absence of evidence’ rather than ‘evidence for absence’.

Producing such analyses in JASP takes a few seconds – often ticking one or
two options is enough.
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Figure 10.6: Prior and posterior distributions of effect size for one of the repli-
cation experiments reported in Wagenmakers, Beek, et al. (2016)

10.5 Example 3: The Learn Stats Module
Recently we added a ‘Learn Stats’ module to JASP. This module contains a co-
herent set of demonstrations that can help teachers explain key statistical con-
cepts, namely: the normal distribution, the binomial distribution, the central
limit theorem, the standard error, descriptive statistics, sampling variability, p-
values, confidence intervals, and effect sizes. The Learn Stats module also has a
statistical decision tree.

The underlying idea is that many key statistical concepts are associated with
a visual representation. The demonstrations in the Learn Stats module try to
bring those visual representations to the fore. A first example: after activat-
ing the Learn Stats module, we select Confidence Intervals. We set the
Confidence level to 80 and the number of Repetitions to 50. The re-
sult is shown in Figure 10.7. The figure helps solidify the correct definition of an
80% confidence interval, namely that it is an interval generated by a procedure
that encloses the true value in 80% of the experiments.

A second example: after activating the Learn Stats module, we choose
Effect Sizes, and click on Pearson correlation coefficient ρ.
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Figure 10.7: A visualisation from the Learn Stats module to clarify the concept
of a confidence interval.

The GUI can then be used to specify a bivariate normal distribution; the corre-
sponding figure shows this normal distribution with ellipses, possibly together
with a sample of random size and the corresponding regression line (see Fig-
ure 10.8).

In the near future, we hope to add more and more education-specific ma-
terial to JASP. Here, we believe, lies a great opportunity to make statistics edu-
cation even more insightful and accessible.

10.6 Example 4: The Learn Bayes Module
JASP contains an extensive suite of Bayesian procedures. In order to support
a better understanding of key Bayesian concepts we have developed a ‘Learn
Bayes’ module that acts as a Bayesian extension of the ‘Learn Stats’ module.

The Learn Bayes module currently contains various straightforward
demonstrations of Bayes’ theorem, designed to assist teaching and foster a solid
intuition of Bayesian inference (Ly, van den Bergh, Bartoš, & Wagenmakers,
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Figure 10.8: A visualisation from the Learn Stats module to clarify the con-
cept of the Pearson correlation coefficient. The population coefficient here is
−0.80; the ellipses describe the shape of the corresponding bivariate normal
distribution; each of the 100 circles is a draw from the population distribution.

2021). Currently, these demonstrations feature Binary classification
(i.e., applying Bayes’ theorem in the context of diagnostic tests), Binomial
estimation and Binomial testing (i.e., a detailed account of Bayesian
inference for binomial data, used extensively in the free course book ‘Bayesian
inference from the ground up: The theory of common sense’, Wagenmakers
& Matzke, 2023), the Problem of points (i.e., the classic gambling prob-
lem that gave birth to the field of probability and statistics) and Buffon’s
needle (i.e., a geometric demonstration of estimating π by throwing needles
on a planked floor).

For a glimpse what Learn Bayes has to offer we focus on the Binary
classification submodule. The analysis of interest centers on the question
‘given that a person tests positive (or negative) for a particular disease, what is
the probability that they have that disease?’ Crucially, the answer depends not
only on the characteristics of the test (i.e., sensitivity2 and specificity3; both set

2The probability that the test correctly detects the presence of the disease.
3The probability that the test correctly claims the absence of the disease.
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Figure 10.9: In the Binary classification tool from the Learn Bayes
module, the icon plot shows why prevalence matters when interpreting the re-
sults from a medical test.

by default to 80%), but also on the prevalence (i.e., the base-rate probability of
having the disease, before obtaining the positive test; set by default to 10%). For
instance, with the default settings for sensitivity, specificity, and prevalence, a
person who tests positive has a 31% probability of actually having the disease,
considerably lower than may be expected based on the performance of the test
alone.

The main philosophy of the Binary classification submodule is to
build an intuition for the correct answer by providing informative visualiza-
tions rather than mathematical derivations. For instance, the surprising re-
sults are often explained using an icon plot. Ticking the Icon plot under
the Plots section yields Figure 10.9. By default, 10 out of 100 people have the
disease (i.e., the prevalence equals 10%). With a sensitivity of 80%, 8 of those
10 people would correctly test positive (i.e., the 8 ‘True positive’ cases in green)
whereas 2 would falsely test negative (i.e., the 2 ‘False negative’ cases in red).
With a specificity of 80%, 0.8 × 90 = 18 people who do not have the disease
would falsely test positive (i.e., the ‘False positive’ cases in amber). Thus, among
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Figure 10.10: The Binary classification tool can propagate uncertainty
about sensitivity, specificity, and prevalence to uncertainty about positive pre-
dictive value, providing a fully Bayesian account of the classic medical example
that is commonly used to demonstrate Bayes’ theorem.

the 8 + 18 people who tested positive (i.e., the green and amber icons), only 8
actually have the disease, for a probability of ≈ 31% (i.e., the positive predictive
value).

In addition to the icon plot, the Binary classification tool also of-
fers a large collection of other visualisations, including an ROC plot, an allu-
vial plot, and signal detection plots. Moreover, it is also possible to quantify
uncertainty in sensitivity, specificity, and prevalence by assigning prior distri-
butions to these quantities; the associated uncertainty then propagates to the
key outcome of interest, that is, the probability of having the disease. Specifi-
cally, the Uncertain estimates option provides the opportunity to assign
beta prior distributions to sensitivity, specificity, and prevalence. By default,
these beta priors are chosen such that the distribution means correspond to
the default point values illustrated in the previous example. The prior distribu-
tions can be updated by the data; in addition, the uncertainty reflected in the
beta distributions propagates to all derived measures. For example, ticking the
Estimates checkbox under the Plots section, and selecting prevalence,
sensitivity, specificity, and positive predictive value yields
Figure 10.10. Now instead of point values, each quantity is represented by an
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Figure 10.11: A screenshot of the Distributions module with a normal distribu-
tion selected. The left panel shows part of the data set; the center panel shows
the input options for the normal distribution; and the right panel shows the
corresponding output.

entire distribution; in this case, it is evident that the point value for positive
predictive value is associated with a relatively high level of uncertainty.

10.7 Example 5: Distributions
Another natural extension of the Learn Stats module is the ‘Distributions’ mod-
ule. As the name suggests, this module contains various probability distribu-
tions, ranging from the common (e.g., the normal and the binomial) to the
exotic (e.g., the Amoroso and the zero-inflated negative binomial). The Distri-
butions module now contains 31 continuous distributions and 9 discrete dis-
tributions.

The main purpose of this module is to familiarize students with different
probability distributions and their properties. The input panel allows students
to set the parameters of the distributions, and the output panel displays the
corresponding probability density function, cumulative distribution function,
or quantile function. In addition, the input panel allows students to query
the distributions in order to highlight particular values for probability density
or probability mass. An example for the normal distribution is displayed in
Figure 10.11. This functionality is also helpful for deciding what distribution to
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use as a prior for a parameter in a Bayesian analysis.
A secondary purpose of the Distributions module is to offer students the

option to work with actual samples from the selected distribution. Synthetic
samples may be generated from a particular distribution at will; these samples
may then be fit using any distribution, and the quality of the fit can be assessed
using a range of plots and statistics. For instance, we may generate data from a
log-normal distribution, and fit these data using a normal distribution; for large
enough sample sizes, the misfit should be apparent both from an inspection of
the figures and from an interpretation of the statistics.

10.8 Example 6: A Network Analysis
Network analysis is used to discover and quantify the unique relationships be-
tween variables. The importance of this endeavor can be highlighted with a
classic example: the relationship between ice cream sales and the number of
drownings. These two variables are highly correlated; when ice cream is in high
demand, more people drown. Of course, the statistical association between
these two variables is entirely due to a third variable: temperature. This kind
of ‘spurious’ relationship can be revealed by calculating a network with partial
correlations. Such a network merely shows relationships between variables that
cannot be explained by the remaining variables in the data set.

The example below concerns data from 2287 eighth-graders (publicly avail-
able in the R package MASS; Bosker & Snijders, 2011). These children took a
language test (Language) and an IQ test (IQ); furthermore, the family’s socio-
economic status was quantified (SES), class size was tracked (Class Size), and
researchers recorded whether or not they were combination classes (i.e. a class
with both children in grade 7 and grade 8; Combination 7-8). A statistical prob-
lem in estimating the partial correlations between these variables is that it is a
priori uncertain which network structure matters. How likely is a network in
which only IQ and SES are connected? How much better (or worse) does a
network perform when the relationship between SES and Language is added?

Bayesian network analysis in JASP (Huth et al., in press) explores the space
of all possible network models in a stochastic way. Network models that pre-
dicted the data relatively well enjoy a boost in probability, whereas network
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Figure 10.12: The strength of relationships between variables in a network struc-
ture. The weights were determined by considering all possible networks simul-
taneously.

models that predicted the data relatively poorly suffer a decline. The final con-
clusions are based on a weighted average of all network models, where the weights
are determined by the models’ posterior probabilities. The weighted conclu-
sions for the sample data are summarized in Figure 10.12.

The analysis shows that IQ and Language are positively related. In addi-
tion, there are positive relationships between SES and both Language, IQ, and
Class Size. Furthermore, there is a small negative relationship between Com-
bination 7-8 and Language. This finding could motivate researchers to investi-
gate whether being in a combination class negatively affects language develop-
ment. Note that this analysis does not provide evidence for a causal relationship
and therefore cannot be interpreted that way.

10.9 Example 7: Time Series & Forecasting
An important and exciting part of statistics concerns the analysis of time se-
ries: a temporal sequence of observations that may contain underlying struc-
ture and hence allows explanation and forecasting of future values. We recently
extended JASP to include several time series analysis tools.

As an example, we analyze a time series of the number of visits to the JASP
website, counted for each day starting from January 1st 2020 until October 8th
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Figure 10.13: The number of visits to the JASP website counted for each day
starting from January 1st 2020 until October 8th 2020. On the left, a line plot
shows the number of visits on they-axis plotted against the corresponding date.
On the right, the marginal distribution of the number of visits is plotted as a
histogram.

2020. The data set can be accessed viaOpen→Data Library→15.Prophet
→ JASP Webpage Visits.

To analyze the data, we will use the ‘Time Series’ module. This module pro-
vides several popular tools such as descriptives, stationarity checks, and spectral
analysis. For the sake of brevity, we will turn straight to modeling the data us-
ing the autoregressive integrated moving average (ARIMA) framework. Open
the analysis via Time Series→ ARIMA. To initiate the analysis, we add the
variable ‘visits’ as a Dependent variable and ‘date’ as Time.

To visualize the data, tick the Time series plot checkbox. To add a
marginal distribution plot, select Distribution→ Density. The resulting
visualization is shown in Figure 10.13.

To analyze the time series data, we need to select the model-building strat-
egy. Under the Model section, we tick the Intercept checkbox to estimate a
general intercept. As it is likely that the number of visits depends on the day
of the week (e.g., fewer people may visit the JASP website over the weekend),
we will specify a weekly seasonality trend: tick the Seasonality component
option and select Custom period with a periodicity of 7 days. For the selec-
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Figure 10.14: ARIMA predictions for the number of visits for the 28 days fol-
lowing October 8th 2020. The blue line represents the point predictions, dark
grey ribbon represents the 80% prediction interval, and light grey ribbon rep-
resents the 95% prediction interval.

tion of the ARIMA terms, JASP automatically selects the best model according
to the BIC criterion.

With the models fitted, JASP can generate predictions for the number of
website visits beyond October 8th 2020. Under the Forecasting section, we
specify Number of forecasts to 28 to compute the predictions for the next
28 days (four weeks). Select Time series plot to obtain the plot shown in
Figure 10.14. It is also possible to obtain the forecasts in form of a table, or
export them as a .csv file onto your computer.

From the forecast plot in Figure 10.14, it is evident that the weekly seasonal-
ity component is informative, as there is a clear dip in the number of website vis-
its during weekends. However, the original website visits shown in Figure 10.13
appear to grow over time, which can be caused by a general upward trend,
or perhaps monthly or yearly seasonality patterns. The traditional ARIMA
framework does not take general trends into account explicitly, and so it is pos-
sible that the forecast will lead to increasingly inaccurate predictions the further
ahead in time we predict.

A classical remedy would be to detrend the data before fitting the ARIMA
model. Alternatively, JASP also provides state-of-the-art time series models de-
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signed to handle data with complex trend and seasonality structures, estimating
change points, and more: BSTS (Bayesian structural time series; Scott & Var-
ian, 2014) and Prophet (Letham & Taylor, 2017). Interested readers can find
the analysis of the JASP website visits using Prophet in the ‘Data Library’.

10.10 Integration with R

Analyses in JASP run predominantly in the R programming language (R Core
Team, 2020). For years, a closer integration between JASP and R was one of
the most popular feature requests. The design and implementation of such
integration is not an easy task, if only for the reason that the term ‘R integration’
may mean different things to different people. However, we are happy to report
that through a lot of hard work on the part of the JASP software engineers,
this major project is now nearing completion. Several crucial components are
in place, with many more to come soon.

Below we first describe the R features currently available, and then fore-
shadow the R features that are still to come.

R console
JASP allows the execution of custom R code through its R console, which can
be activated and deactivated as a module. The data set loaded in the JASP in-
stance is automatically included in the environment’s data object; if any filters
were used in the JASP data viewer, the filtered data are available through the
filteredData object.

To illustrate the use of theR console, we will replicate the time series analysis
above using R code in JASP. Re-open the JASP webpage visits data set in
JASP, and activate the R console window by navigating to the modules menu
and selecting the console.

First, we adjust the environment of the R console by selecting ‘Time series’
in the dropdown button on the bottom right. This ensures that all packages
associated with the ‘Time series’ module are available with the correct version.
Next, we can execute the following commands:
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library(forecast)
y <- ts(data$visits, frequency = 7)
fit <- auto.arima(

y = y,
allowmean = TRUE,
seasonal = TRUE,
ic = "bic"

)
predictions <- forecast(fit, 28)

The first line loads the forecast package (Hyndman et al., 2023; Hyn-
dman & Khandakar, 2008) that implements common time series procedures.
Next, we specify that the variable ‘visits’ is a time series with a periodicity of 7
days, and store that time series in an object called y. The next command runs
the auto.arima function, which selects the ARIMA model that best fits the
time series, and store the model in an object called fit. We specify allowmean
= TRUE to allow an intercept, seasonal = TRUE to allow seasonal models,
and ic = "bic" to specify that we wish to select the best model based on the
BIC criterion (Schwarz, 1978). Lastly, we make predictions for the next 28 days
by calling the forecast function and store the predictions in an object called
predictions.

Figure 10.15 displays the R console next to the results from the ‘Time se-
ries’ module. The best model, estimated coefficients, and fit statistics all match
the output in JASP – the only difference being that the JASP output has been
organized in easy-to-read tables. Similarly, printing the predictions object
returns the forecasts for the next 28 days that are plotted in Figure 10.14.

TheR console is of course much more flexible, as users can run custom code
independently from the JASP analysis. Therefore, the console is not only use-
ful for reproducing results given by JASP, but for supplementing JASP results
with additional analyses and calculations as well.

JASP syntax for R
The R console provides a convenient interface to R in JASP. One may wonder
about the opposite: a convenient interface to JASP in R . The JASP team is
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Figure 10.15: The R console (right panel) can run custom code in JASP inde-
pendently from JASP analyses (left panel).

currently in the phase of implementing the ‘R syntax’ functionality that aims
to do just that.

In principle, JASP modules are R packages. The R syntax project aims to
provide convenient wrapper functions for JASP analyses that can be executed
as functions in R which will return nicely formatted output in the R session.
The analysis wrappers will be accompanied by standard help files that R pro-
grammers are accustomed to. In essence, R programmers will be able to run
JASP analyses completely independently of whether or not they have the JASP
application installed on their computer, or even without ever working with the
JASP GUI in the first place.

Another exciting feature of the ‘R syntax’ in JASP is that JASP and R be-
come interoperable. When specifying the analysis in the GUI, JASP can gener-
ate the corresponding R function call at the top of the analysis, as shown in Fig-
ure 10.3. Moreover, theR syntax within JASP GUI is a two-way street: changing
an option in the GUI updates the syntax shown in the Rwindow, but applying
changes to theR syntax also updates the GUI. This provides an opportunity for
statisticians to experiment with the analyses and learn how to produce valid R
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syntax.
The use of the code generated by the JASP GUI is also twofold. We can

execute it in the R console which will run the corresponding analysis in JASP,
without having to specify anything in the GUI. For example, we can run the
descriptive analysis of the Adam Sandler data as demonstrated in the first ex-
ample of this article. First, reopen the Adam Sandler data set in JASP and ac-
tivate the R console. In the R console, activate the ‘Descriptives’ environment
in the dropdown menu at the bottom right of the console window. Paste the
following code in the console:

jaspDescriptives::Descriptives(
formula = ~Freshness+`Box Office ($M)`,
correlationPlots = TRUE)

The Add analysis button activates when the R console recognizes the
command as a valid call of a JASP analysis. A click on the button creates a new
analysis in the JASP window, including the GUI and results. Thus, one can
share JASP analyses without sharing the full .jasp files - the data and syntax
is all one needs to reproduce an analysis in JASP.

The final step of the R syntax project is to enable running these JASP com-
mands as functions in R , outside and independently of JASP GUI itself, per-
haps as part of a larger analysis script in R . This is one of the high-priority fea-
tures that the JASP team currently focuses on.

Developer tools
Currently, modules in JASP are predominantly written and maintained by JASP
team members or close associates and colleagues. However, there is tremen-
dous potential in new modules being created independently of the JASP team.
As the R integration intensifies, this process becomes easier to facilitate; writ-
ing a JASP module is similar to writing an R package, with a couple of extra
steps. Therefore, R programmers that implement novel statistical techniques
in a custom R package are just a couple of steps away from making their meth-
ods available in JASP as well.

In the future, these external contributions will be supported by an ‘Online
Module Library’, which will serve as a curated list of modules to which users
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can contribute, as well as download and use in JASP. New modules will no
longer be bundled with the main application, but will still be easy to activate at
will.

To further facilitate the development of user contributed modules, we cre-
ated several developer tools. First, the jaspBase package mainly serves R de-
velopers as a tool for communicating with the JASP application – for example,
it makes it possible to create a structured results panel, consisting of different
tables, plots, and more.

Second, the jaspGraphs package provides functionality that facilitates
the graph style outlined in the ‘Compendium of Clean Graphs in R’ men-
tioned earlier (shinyapps.org/apps/RGraphCompendium) by presenting
a custom JASP style theme building on the popular graphing R package
ggplot2 (Wickham, 2016). The package also provides general functions for
generating common plots that can be reused inside of the JASP modules so as
to keep the output consistent across different analyses.

Last but not least, the jaspTools package is a JASP analogue to the popu-
lar R package devtools (Wickham, Hester, Chang, & Bryan, 2022), and pro-
vides functionality that is not necessarily useful during the runtime of a JASP
analysis, but makes it easier to create, develop, and maintain JASP modules
themselves.

An important part of code maintenance is regular testing. For unit testing
we rely on the testthat framework (Wickham, 2011). jaspTools provides
functionality that allows creating and running these tests in R for continuous
testing and integration. However, we also view testing as a form of results ver-
ification, which means that in addition to testing consistency we also strive to
test the correctness of the results by comparing the results to popular statistics
books. Thus, results verification has a value outside of code development as
well, by means of demonstrating that the results produced by the software are
correct – which is not only useful for code contributors, but for regular users
as well.

To make the correctness checks transparent, our verification project (avail-
able at jasp-stats.github.io/jasp-verification-project/) pub-
lishes the results of these tests to make them available to users who do not nec-
essarily want to look inside of the code base. However, the maintenance of the

https://shinyapps.org/apps/RGraphCompendium
https://jasp-stats.github.io/jasp-verification-project/
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current setup is cumbersome, as the results of the verification project are dis-
connected from the code in our continuous testing pipeline. With the full R
integration, jaspTools will provide verification functionality that facilitates
writing custom ‘testing vignettes’. These vignettes will serve three use-cases: (1)
they will be used directly in our continuous testing pipelines, making sure that
changes to the code do not break the verified results, (2) they will be human
readable so that they eventually replace the painstakingly compiled documents
for our users, and (3) they will serve as documentation on how to use JASP
analyses using the R syntax. By being directly integrated inside of the code base
of a module, the ‘vignettes’ will be easy to maintain. We believe this will further
push the boundaries of transparent and verified code.

10.11 Why not just use R?

The methodologically sophisticated reader may wonder what the added value
of JASP is overR (or other programming software such asPython andJulia).
It is certainly true that for some courses (especially in mathematics and com-
puter science), a programming language is preferred. However, it should be
noted that for many of our own analyses, we prefer JASP to R . The main rea-
son is efficiency: the analyses in JASP are completed with a few mouse clicks,
including figures and tables, whereas in R we first have to search diligently for
which package also offers the desired functionality, what the arguments are for
the relevant function, and how best to represent the results. The task further
increases in complexity when we do not only care about computing the correct
results, but also wish to produce clean and consistently formatted output ready
for publication. For us, the same analyses that cost seconds in JASP may result
in hours of coding if done with R .

For other courses, a two-stage model is possible: all students start with
JASP, and those with a methodological interest switch to R after one or two
years. In the future, we will expand JASP to facilitate this transition. In fields
such as medicine, coding in R is not an obvious option, but it is still necessary
for students to be able to understand the literature and possibly perform tests
themselves. JASP is ideal for this group of users.

JASP is currently a full-fledged replacement for SPSS, and a useful com-
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plement to R . We are optimistic that JASP can grow into a widely supported
inter-university project in the future, with significant benefits for both teach-
ing and research.
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It’s difficult because this is my life, every
year. I have trees out there and I saw every
one small like that and they are now mas-
sive. I will greet every one of them before I
leave and say ‘thank you’.

–Arsène Wenger Conclusion

Since fall of 2017, ‘Gazing into a discrete world’ steadily grew
one project after another. These projects ranged from methodological
articles about processing raw eye-tracking data, through uncovering sys-

tematic tendencies in human eye movements, to analysing high level cognitive
strategies.

As there is a considerable heterogeneity between the projects, it may be dif-
ficult to see the forest for the trees. However, some chapters have more in com-
mon with each other than with others, and so in line with the spirit of ‘clas-
sification’, they were grouped in three discrete parts of this book. Before we
step back to enjoy the panoramic view of the forest, we will venture into these
three smaller woodlands and greet every individual tree. After all, each chapter
should hold up to scrutiny on its own and therefore deserves (some) unique
attention.

Discrete Patterns of Behavior

Mixture modeling and classification is the center of this part of the thesis. Across
the four chapters, we have applied mixture modeling concepts in different con-
text. The essential question is how to best model discrete patterns of behav-
ior, and how to use eye-tracking as a stream of data additional to the tradi-
tional sources of information used in cognitive research. Each individual chap-
ter showcases how discrete patterns in behavior can be modeled and studied
and how understanding discreteness of data can help us understand the under-
lying mechanisms behind phenomena of interest.

Chapter 1 introduces a novel approach to eye movement analysis, focusing
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on descriptive and generative aspects. It poses the question: Is it possible to
develop a model that not only discerns various eye movement events, such as
‘fixations’ and ‘saccades’, from raw eye-tracking data but also characterizes their
typical features or even generates synthetic data closely mirroring real observa-
tions? The central challenge here is the latent nature of eye movement events,
which are not directly observable and must be inferred from the data. Given the
discrete nature of these events, a Hidden Markov Model (HMM) emerges as an
apt choice. This model allows for the inference of transition patterns between
different eye movement events from the raw data, treating these movements as
hidden causes of observable patterns. The advantage of this methodology for
eye movement classification is its ability to learn directly from the data it ana-
lyzes, thereby not depending on labeled datasets from other contexts, and even-
tually removing the necessity to rely on arbitrary thresholds. Although compet-
itive with current classification algorithms, this model does display character-
istic errors, such as confusing low-velocity ‘smooth pursuits’ with ‘fixations’,
suggesting its status as more experimental than ready for immediate applica-
tion. Yet, the model-based approach’s ability to identify mismatches with data
is invaluable, offering insights into eye movement characteristics and potential
model enhancements. Furthermore, this work illuminates methods for validat-
ing existing algorithms, employing a three-step approach involving simulation,
comparison with human coders, and assessment against existing algorithms.
This study highlights the often-overlooked need for validation through simula-
tion, a gap stemming from many algorithms’ non-generative nature. The use of
generative models, coupled with innovative experimental designs, could break
free from the constraints of human-labeled data as the ‘gold standard’ (Hooge
et al., 2018), paving the way for new benchmarks in evaluating eye movement
classification algorithms.

Chapter 2 details the creation of a WALD-EM model tailored to analyze
eye movements. This model interprets eye movements as sequences of distinct
fixations, where each fixation is defined by a specific location and duration in
the visual field. During these fixations, the eye remains mostly static, playing a
crucial role in visual perception by enabling the brain to process visual infor-
mation in segmented units. This approach aids in extracting key elements and
forming an integrated mental image of the visual scene. The model’s design is
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flexible, allowing for adjustments and the integration of various elements that
could predict or impact eye movement patterns. Such adaptability makes it an
effective tool for investigating the intricate interactions between lower-level and
higher-level cognitive processes that guide eye movement behavior.

Chapter 3 shifts focus from elementary explanations of eye movements to
addressing the “inverse Yarbus problem” - the challenge of deducing an indi-
vidual’s cognitive processes or intentions from their eye movement patterns.
Specifically, the chapter delves into the use of eye movements as a means to
identify different strategies employed in cognitive reasoning tasks. It posits that
varying strategies are likely to produce distinct eye movement patterns, and rec-
ognizing these unique patterns can reveal the underlying cognitive strategies,
relying only on eye movement data. This perspective contrasts with prior re-
search, which often presumed a link between diverse strategies and additional
variables to start with, and using this presumed relationship to identify charac-
teristic eye movement patterns that relate to these strategies (Hayes et al., 2011,
2015; Vigneau et al., 2006). The chapter argues that such assumption is not nec-
essary as identifying distinct strategies can be effectively achieved through mix-
ture models. Yet, it also demonstrates that by exploiting the logical structure of
cognitive tasks, simpler methods like representing eye movements with transi-
tion matrices and classifying them into distinct groups using k-means cluster-
ing can also be effective. This method is not only straightforward to implement
but also easy to interpret, offering a valuable supplemental tool for alternative
analytical approaches.

Chapter 4 continues exploring discrete cognitive processes but shifts away
from eye-tracking data for their identification. This chapter delves into the ap-
plication of Hidden Markov Models (HMMs) in conjunction with evidence
accumulation models (EAMs) for analysing data from speeded decision tasks.
It challenges the conventional view of trade-off between speed and accuracy. In-
stead, it proposes that individuals might alternate between different cognitive
states, yet allows for a continuous trade-off within those states. The chapter
introduces an innovative model that combines HMMs with a simplified ver-
sion of the Linear Ballistic Accumulation (LBA) model. This integration suc-
cessfully addresses the usual computational challenges associated with EAMs
while retaining the flexibility needed for continuous trade-off within states.
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The complex computational nature of this model makes parameter estimation
particularly demanding. To validate the model’s computational efficacy, the
chapter employs simulation-based calibration (SBC), a method that ensures the
Markov Chain Monte Carlo (MCMC) technique used in the study correctly
approximates posterior distributions. The effective application of this model
confirms the utility of SBC as a robust tool for validating complex cognitive
models.

Although these chapters extensively utilize mixture modeling methods, a
key cautionary note is this: not every modeling situation necessitates the use of
mixture models. These models are undoubtedly valuable tools, yet they should
be used only when applicable - that is, when there is a reason to believe that the
data are generated by underlying processes that are distinct from one another.
The selection of topics in these chapters was intentional, chosen because they
inherently suited mixture modeling ideas. This highlights the importance of
selectively and thoughtfully applying mixture models where they are most ap-
propriate, rather than defaulting to their use in all cases.

Addressing Imperfections

The second part of this book discusses work aimed towards improving research
practices in developmental research, with a key emphasis on the habituation
paradigm that is prevalent in this field.

Small samples may lack the statistical power and diversity needed for ro-
bust generalizations, while large samples may become unwieldy and resource-
intensive. The challenge of striking the right balance can be difficult. Chapter 5
presented a tutorial on Bayesian sample size planning in the context of devel-
opmental research, where collecting large sample sizes is arguably more difficult
than in other areas of psychological research. Bayesian sequential designs and
Bayesian design analysis has the potential to overcome these limitations. In the
case of sequential designs we can continuously evaluate the evidence provided
by the data as it comes in, and stop data collection once we can draw strong
enough conclusions. Bayesian design analysis can help researchers planning an
appropriate study design to answer questions of interest, or evaluate whether
it is feasible to collect required sample sizes in the first place. Both approaches



425

thus lead to saving resources and increase transparency of empirical research.
Individual studies, while informative, may only offer fragmented answers.

A holistic understanding requires weaving together diverse strands of research
to construct a more comprehensive theoretical accounts of empirical phenom-
ena. In chapter 6, we focused on the study of infant habituation, and designed a
collaborative systematic review and meta-analysis project from over 700 articles
that use habituation paradigms. The aim of the project is to better understand
current practices in habituation research as well as to try to disentangle which
practices lead to more robust results. Unfortunately, the chapter only presents
the first stage registered report, and as such presents no results so far — as of
writing of this thesis, the project is still undergoing.

Understanding current practices in habituation research is an important
topic, but solely analysing already existing practices may miss opportunities to
change the practices entirely. Chapter 7 provided a critical overview of the cur-
rent standards in habituation research and discussed potential alternatives. Key
points included the use of modeling to understand individual differences in in-
fants’ habituation patterns, the possibility of multi-population (mixture) mod-
els to represent ‘habituators’ and ‘non-habituators’, and the flexibility of statis-
tical models in representing various habituation processes. We emphasized the
need for empirical validation of novel statistical models and suggest embrac-
ing a more collaborative approach in research to enhance the understanding of
habituation processes.

It is crucial to recognize that the challenges highlighted in the three chapters
on the habituation paradigm are not unique to this area alone but are pervasive
across various research fields within and without of developmental psychology.
The underlying message can be succinctly described by the somewhat cliché
statement that “science is hard”. Despite these complexities, advancements in
data collection methodologies, study design, and data analysis techniques are
progressively equipping researchers to address many of the prevalent issues in
the field. Further, we now explicitly understand what we know and what we
do not know. This work represents a step forward, yet it does not resolve or
address all the challenges, and there remains a substantial need for continued
collaborative efforts and innovations in future research endeavors.
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Learning under Uncertainty
Uncertainty is an inherent part of every aspect of science. Learning how to deal
with uncertainty is therefore an important aspect of any scientific endeavor.
Bayesian reasoning provides a coherent description of rational reasoning pro-
cess of dealing with uncertainty. Much of this work relied on Bayesian reason-
ing and Bayesian statistics. However, it can be argued that Bayesian methods
are still underused in the scientific literature. A common barrier for a more
widespread adoption of Bayesian methods is the relative difficulty of imple-
menting these methods manually, and a lack of training and available methods
ready to be used by researchers.

The focus of the third part of the thesis was on making statistical methods
more accessible and sustainable through the use of JASP, a free and open-source
software designed for both classical and Bayesian analyses. This work empha-
sized the importance of statistical literacy and the need for tools that are both
user-friendly and robust. By utilizing JASP, we aim to bridge the gap between
complex statistical theory and practical application, making advanced statisti-
cal techniques more approachable for researchers, students, and practitioners
across various fields.

This part of the book collects the work dedicated to (1) developing novel
Bayesian methods to analyze common designs, (2) providing educational mate-
rial to make Bayesian reasoning more intuitive, and (3) implementing Bayesian
solutions in user friendly statistical software packages.

Chapter 8 extended the arsenal of statistical tools by Bayesian inference for
partial correlations. The work presented analytic derivations for the Bayes fac-
tor test as well as the posterior distribution of the partial correlation coefficient,
and proved that the resulting inference satisfied several desiderata for optimal
inference in situations where prior knowledge is limited or absent, which makes
the approach appealing as the default choice for analysing partial correlations.

Chapter 9 is a tutorial aimed at medical students and professionals, as well
as students of statistics, and discussed interpreting the results of a fallible med-
ical test; a standard example for explaining the Bayes theorem using prevalence,
sensitivity, and specificity. However, a less well known fact is that prevalence,
sensitivity, and specificity are usually associated with considerable uncertainty.
Bayesian reasoning dictates that such uncertainty is taken into account. There-
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fore, we delved deeper than discussing Bayes’ theorem by discussing how allow-
ing uncertainty in these parameters affects our conclusions. The examples were
accompanied with examples from the Binary classification module in
JASP whose implementation was done as part of the present work as well.

Chapter 10 presented a high level overview of JASP, a user friendly statis-
tical software that makes many of the novel Bayesian methods available to the
practical researcher. We demonstrated how JASP can be effectively used for
a wide range of statistical analyses, highlighting its intuitive interface, which
allows for easy navigation and understanding of statistical concepts. The chap-
ter explained components of the software as well as its underlying philosophy,
stressing the value of open-source, transparency, and results verification. We
also addressed the challenge of maintaining sustainability in statistical meth-
ods, advocating for open-source solutions like JASP that ensure ongoing de-
velopment and adaptation to the evolving needs of the scientific community.

In summary, this part of the book described comprehensive additions and
maintenance of JASP as a tool for accessible statistical analysis of data. This
work underscores the importance of making statistical methods more user-
friendly and widely available, thereby fostering a deeper understanding and
broader application of statistics in various disciplines.

Overall picture

Bespoke vs. generic models

This thesis presented a seemingly dichotomous approach to statistical model-
ing, balancing between the development of bespoke models tailored for specific
applications and the creation of generic statistical procedures suitable for a wide
range of scenarios. At first glance, this dual approach might have appeared to re-
flect contradictory philosophies. However, upon closer examination, it became
evident that this dichotomy was not a contradiction but rather a comprehen-
sive strategy that leveraged the strengths of both bespoke and generic models,
acknowledging their respective utility in different contexts.

Custom-built, or bespoke, models are designed with specific theoretical as-
sumptions and empirical contexts in mind. They excel in addressing nuanced
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and detailed aspects of a particular research question, offering deep insights
that were closely aligned with the theoretical framework of the study. These
models, by virtue of their specificity, provide a high degree of relevance and
precision for the targeted research scenarios. A significant portion of this thesis
was devoted to creating tailored models designed to address distinct empirical
questions within particular contexts and research paradigms. The advantage of
these ’bespoke’ models lies in their incorporation of theoretical assumptions,
which are often only implied in traditional methodologies, directly into the
model’s structure. This integration simplifies the interpretation of results, as
the model’s parameters are closely linked to the theoretical concepts of interest
to researchers. This also allows leveraging expert judgement in setting informed
priors, which can lead to improved inferences. Additionally, the use of genera-
tive models enables the verification of a model’s capability to replicate observed
data patterns. Looking ahead, these models offer the potential to simulate out-
comes under different experimental conditions, paving the way for innovative
research questions and experimental design exploration. On the other hand,
implementing bespoke models may take considerable time, effort, and exper-
tise. Further, it may not be possible to build such models when there is little
theoretical understanding in the first place behind the process that generates
the data

While custom-built models offer valuable specificity, they can sometimes
become too narrowly focused, making adaptation to new contexts challeng-
ing. Additionally, their initial implementation might be difficult. A segment of
this thesis was dedicated to developing models that, while somewhat context-
dependent, can be more readily applied or adapted to various scenarios. For
instance, the WALD-EM model in Chapter 2 is versatile, allowing for the ad-
dition, removal, or alteration of different factors influencing eye movements,
making it adaptable beyond its initial application. This flexibility is even more
pronounced in Chapter 3, which employs a straightforward two-step process:
(1) categorizing groups of eye movement behaviors, and (2) associating these
groups with other variables. This chapter could have focused on a joint model
specifically designed for its primary application, like the Mastermind game.
However, such a model would likely be tied to the theoretical assumptions of
that particular game, potentially limiting its applicability to other tasks, like
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the Matrix reasoning task. Therefore, the chapter adopted a methodology that
strikes a balance between bespoke and generic statistical analyses. This approach
aligns the data analysis more closely with the theoretical underpinnings of de-
riving cognitive strategies from eye-tracking data, while maintaining flexibility
for specific applications. Due to its simplicity, it also presents a more accessi-
ble implementation option for researchers using familiar statistical software, as
opposed to complex models requiring specialized tools.

On the other hand, generic statistical procedures were developed with ver-
satility and broad applicability in mind. These models were designed to per-
form robustly across a variety of scenarios, especially in situations where spe-
cific models might not have been available or applicable. They served as valu-
able tools for researchers who needed reliable and accessible methods for a wide
range of applications, particularly when bespoke models were not feasible or
necessary. This thesis also emphasized the creation and implementation of these
generic statistical procedures The emphasis on generic methods extends to the
thesis’s third part, which is dedicated to the implementation of these models.

A notable example of this approach is found in Chapter 8, which intro-
duced a Bayesian method for analyzing partial correlations. This chapter not
only demonstrated the practical application of the procedure but also provided
theoretical validation, showcasing its suitability as a default Bayes factor in var-
ious research contexts.

Furthermore, many of these generic statistical methods are being developed
for integration into JASP, as discussed in Chapter 10. JASP is designed to be
user-friendly and accessible, promoting the adoption of Bayesian methods in
the scientific community. By focusing on the general applicability and ease of
use, this thesis contributes to the broader goal of encouraging widespread adop-
tion of Bayesian methods in scientific research. This endeavor reflects a com-
mitment to enhancing the statistical toolkit available to researchers, facilitating
more rigorous and reliable scientific inquiry across various fields.

The thesis thus embraced a holistic view of statistical modeling, recognizing
that both bespoke and generic models had their place in scientific research. This
balanced approach underscored the importance of having a diverse toolkit of
statistical methods, each suited to different types of research questions and con-
texts. By integrating both bespoke and generic models, this thesis contributed
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to a more flexible and comprehensive approach to statistical analysis in various
fields of scientific inquiry.

Statistical modeling as software development
The process of building statistical models, whether tailored for specific sce-
narios or designed for general application, plays a crucial role in scientific re-
search. This task often involves the creation of custom code in various pro-
gramming languages, drawing parallels with the principles of software develop-
ment. However, a key distinction lies in the traditional perception of code in
academic research versus that in software development. Academic code is typi-
cally crafted to function effectively for a single purpose—generating results for
a specific study or publication. In contrast, software development prioritizes
repeatability and reproducibility, ensuring that the software operates consis-
tently across different systems and use cases.

This thesis advocates for a broader perspective on the role of academic code.
It posits that statistical models are not merely instruments for generating aca-
demic results but are subjects of scientific investigation in their own right. This
approach entails viewing the development of these models as more than just
reaching an end result; it includes preparing them for scrutiny, adaptation,
and utilization by other researchers. Such an approach necessitates rigorous
validation of models through comprehensive simulation studies, practical ap-
plications to real-world datasets, and continual testing for code accuracy dur-
ing development. Additionally, this perspective underscores the importance of
publicly releasing the code, complete with thorough documentation, thereby
enabling other researchers to access, assess, and adapt it for their respective pur-
poses.

Taking this concept further, some of the methodologies developed in this
thesis were integrated into JASP, a user-friendly, point-and-click software. This
integration blurs the lines between statistical modeling and software develop-
ment even more. It raises the bar for consistency and correctness in imple-
mentation, aligning more closely with the standards of professional software
development. This shift signifies an evolving landscape in academic research,
where statistical modeling is increasingly recognized and treated as a sophisti-
cated form of software development, adhering to high standards of reliability,



431

usability, and accessibility.

Science as a collective endeavor
While the thesis covered a diverse array of topics, a recurring theme emerged:
the increasing complexity and specialization required in empirical research. Mod-
ern statistical modeling demands highly skilled professionals, each bringing spe-
cialized expertise within the broader field of statistical analysis. This specializa-
tion extends beyond mere theoretical knowledge, encompassing technical pro-
ficiency in sophisticated statistical tools and methodologies.

Similarly, the design and execution of research studies call for a specialized
set of skills. This specialization is not just theoretical but also practical, involv-
ing the intricate setup and management of laboratory environments and their
equipment. Successful research design and data collection demand a nuanced
understanding of theoretical concepts and the practical know-how to imple-
ment them effectively in a laboratory setting.

Moreover, drawing robust theoretical conclusions from the gathered evi-
dence is another area where specific domain knowledge and experience become
crucial. This aspect of research underscores the importance of deep subject-
matter expertise to interpret data correctly and to draw meaningful inferences.

Finally, it is vital to recognize that the elements of research design, data col-
lection, data analysis, and synthesis are intricately interconnected. The devel-
opment of complex statistical models necessitates a deep understanding of their
theoretical foundations. Similarly, the process of data collection may involve
the real-time application of statistical models. Yet, requiring individual scien-
tists to master all of the steps in the empirical research cycle becomes increas-
ingly unrealistic under the assumption that the knowledge required to conduct
each individual step continues to become more specialised. This interdepen-
dence highlights the necessity for more integrated and collaborative approaches
in scientific research.

Given these complexities and the need for diverse skill sets, high-quality
research increasingly relies on collaborative efforts. Building interdisciplinary
teams that bring together researchers with varied expertise is becoming essen-
tial. These teams, by combining the strengths of scientists from different do-
mains, can navigate the multifaceted challenges of modern research more ef-
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fectively. Such collaborations facilitate the sharing of unique insights and tech-
niques, leading to more comprehensive and well-rounded research outcomes.
In this evolving research landscape, fostering strong collaborative networks is
not just beneficial but may become a necessity for advancing scientific knowl-
edge and achieving breakthroughs in various fields.
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